
The challenges in designing a secure hard drive

Raphaël Rigo / AGI / TX5IT

2015-03-26 / SyScan

Designing a secure hard drive

Outline

1 Specifications

2 Design

3 Attacks and evaluation methods

4 Conclusion

2015-03-26 / SyScan 2 / 32

Designing a secure hard drive

Introduction

Presentation goal:

describe the world of consumer encrypted HDD enclosures

analyze the design challenges

present an overview of attacks and possible solutions

All based on practical experience:

thorough analysis of several enclosures

analysis of several encrypted USB flash drives

2015-03-26 / SyScan 3 / 32

Designing a secure hard drive

Outline

1 Specifications

2 Design

3 Attacks and evaluation methods

4 Conclusion

2015-03-26 / SyScan 4 / 32

Designing a secure hard drive

Features

User features:

should use standard SATA HDD
authentication mean could be

hardware keyboard to enter PIN
could be fingerprint reader
could be RFID

optional LCD display

good confidentiality (!!)

good performance

2015-03-26 / SyScan 5 / 32

Designing a secure hard drive

Vocabulary

Some definitions:

µC: micro-controller

“secrets”: needed to decrypt on-disk data (NOT user files on disk)

DEK: disk encryption key: key used to encrypt on-disk user data

class break: break one drive =⇒ break all drives

2015-03-26 / SyScan 6 / 32

Designing a secure hard drive

Security needs

Security features:

multiple PINs to allow multiple users

good data encryption algorithm (AES-XTS?)

should warn user on bad PIN (for usability)
anti bruteforce:

incremental delay
auto destroy after X tries

independent security: breaking a drive should not lead to class-break

Attacker model:

moderately motivated attacker

offline attacks only (drive is acquired locked)

evil-maid attacks off scope

no advanced hardware attacks capabilities (FIB, etc.)

2015-03-26 / SyScan 7 / 32

Designing a secure hard drive

Outline

1 Specifications

2 Design

3 Attacks and evaluation methods

4 Conclusion

2015-03-26 / SyScan 8 / 32

Designing a secure hard drive

Components

PCB with several components:
USB↔SATA bridge with encryption support. E.g.:

Initio INIC-3607E
Fujitsu MB86C31
Symwave SW6316
etc.

most of them include a CPU (ARM, ARC, etc.)
microcontroller for:

keyboard handling
PIN verification

Optional SPI flash for firmware/data storage

and of course: SATA port, USB port

2015-03-26 / SyScan 9 / 32

Designing a secure hard drive

Classical design

microcontroller
USB↔SATA

bridge
Flash (bridge

firmware)

PIN USB

SATA disk

DEK

µC sends DEK to bridge to allow user data access

2015-03-26 / SyScan 10 / 32

Designing a secure hard drive

Crypto design / secrets storage
Tradeoff:

we must be able to check for correct PIN

even with access to the stored secrets, the attacker must be slowed down

Do’s
generate disk encryption key with cryptographically secure RNG

hash PIN securely (slow, with salt) before use

encrypt disk encryption key with each PIN hash

Storing secrets
must be stored on board, not on disk !

should not be accessible without hardware (decapping) attacks

=⇒ the main goal is to force the attacker to use expensive attacks

2015-03-26 / SyScan 11 / 32

Designing a secure hard drive

Example design: 1

microcontroller
USB↔SATA

bridge
Flash (bridge

firmware)

PIN USB

Secrets

SATA disk

2015-03-26 / SyScan 12 / 32

Designing a secure hard drive

Design analysis

Fail
Secret are stored on HDD. Potential consequences:

if disk encryption key (DEK) is in cleartext on disk =⇒ game over

DEK is encrypted with fixed key on board =⇒ class break

DEK is encrypted with PIN =⇒ PIN bruteforce =⇒ class break

DEK is encrypted with key stored on board =⇒ better store DEK on board

2015-03-26 / SyScan 13 / 32

Designing a secure hard drive

Outline

1 Specifications

2 Design

3 Attacks and evaluation methods

4 Conclusion

2015-03-26 / SyScan 14 / 32

Designing a secure hard drive

Overview

Attackers goal:

access data of stolen/found disk without PIN code
ideal case:

class break: break one drive =⇒ break all drives

Methods:

from “obvious and cheap” to “complex and expensive”

software first, hardware last

as seen from a software reverser point of view

2015-03-26 / SyScan 15 / 32

Designing a secure hard drive

Basic testing (1)

Basic crypto testing:
1 configure encryption
2 write zeros on the drive
3 remove drive from enclosure
4 read encrypted data directly from the disk (use a normal USB/SATA bridge)
5 verify that the entropy is very high and that ECB is not used

Verify the key (and IV) is not fixed or derived directly (without salt) from the PIN:
1 using the same enclosure, reset and reconfigure encryption with the same PIN
2 write zeros again
3 ensure that the (raw) encrypted data is different from the previous read

2015-03-26 / SyScan 16 / 32

Designing a secure hard drive

Basic testing (2)

Verify the disk is tied to a specific enclosure (i.e. some secrets in hardware):
1 put drive in enclosure A
2 configure encryption with non default PIN P, write data
3 put drive in (new, out of the box) enclosure B
4 verify it doesn’t work:

drive should not be recognized as encrypted
OR PIN P should not work
AND data should never be accessible

If data can be accessed with PIN P, secrets are stored on the drive:

class break probable (no difference between enclosure)

check where the data is stored: end of drive ?

and how: encrypted, etc. ?

2015-03-26 / SyScan 17 / 32

Designing a secure hard drive

Example design: 2

Secrets

microcontroller

USB↔SATA
bridge

Flash (bridge
firmware)

PIN USB

SATA disk

2015-03-26 / SyScan 18 / 32

Designing a secure hard drive

Design analysis

Better design !
Secret are stored on µC. Accessing secrets is (probably) equivalent to accessing
firmware:

unprotected µC =⇒ game over

protected µC =⇒ known problem

Accessing data on a protected µC
Rather well studied problem, example research:

RAM access [1]

bootloader rewrite attacks [2, 3]

hardware attacks [4, 5]

2015-03-26 / SyScan 19 / 32

Designing a secure hard drive

Firmware recovery

Obvious goal: read the code, understand what is needed to attack.

easiest: cleartext code in firmware update:)

easy: cleartext code on SPI flash: dump SPI

medium: cleartext code on unprotected µC: use documented methods to read
code

hard: encrypted code on SPI flash

hard: code on protected but insecure µC

hardest: code on protected, secure µC

2015-03-26 / SyScan 20 / 32

Designing a secure hard drive

Firmware reversing

Goals
look for backdoors !
identify crypto mechanisms:

potential key recovery schemes
PIN change handling

identify secrets storage

reverse RNG

reverse “anti-bruteforce” protection

bindiffing different versions

RNG analysis
verify it is used for first configuration (manufacturer generated key ?)
verify its quality. If flawed (predictable):

manufacturer backdoor with plausible deniability ?
construct RNG bruteforce attack

2015-03-26 / SyScan 21 / 32

Designing a secure hard drive

Bus sniffing

Goal
if firmware cannot be extracted: understand interactions between components

Means
Logic analyzer

Practical example
drive with “hard to dump” components
shared bus with:

bridge ↔ µC communications
bridge ↔ SPI flash comms

2015-03-26 / SyScan 22 / 32

Designing a secure hard drive

Placing the probes
Using the (awesome) Saleae Logic Pro 16:

2015-03-26 / SyScan 23 / 32

Designing a secure hard drive

Sniffing results

2015-03-26 / SyScan 24 / 32

Designing a secure hard drive

Analysing traces

High level results
proprietary protocol between bridge and µC

rather easy to analyze: preambles, classical TLV scheme
PIN handling:

bridge requests PIN
µC reads PIN
µC sends hashed PIN to bridge
bridge returns result

Security analysis
bridge checks the PIN

hash function is non standard

=⇒ not bruteforcable, must break bridge

2015-03-26 / SyScan 25 / 32

Designing a secure hard drive

Brute forcing, timing attacks and glitching

Spritesmods.com [6] has an awesome analysis that shows:

how “PIN errors” count is handled

a method to reset “bad tries” count in EEPROM

a bad PIN detection to allow infinite bruteforce

Other possible attacks include:

if DEK is not encrypted by PIN: inject fault during compare [7]

replacing physical keyboard by µC to automate bruteforce

2015-03-26 / SyScan 26 / 32

Designing a secure hard drive

Chip decapping: the ultimate solution

Principle [5]
1 remove chip plastic capping (hot HNO3; dangerous!)
2 remove protective metal layers over fuses (HF extremely dangerous!)
3 reset protection fuses
4 dump chip content: secrets, code

In practice
use internal lab (complex)
pay Chinese lab [8, 9], price varies:

$2000 for “easy” chip
$7500 for a more modern chip with some protections

2015-03-26 / SyScan 27 / 32

Designing a secure hard drive

Outline

1 Specifications

2 Design

3 Attacks and evaluation methods

4 Conclusion

2015-03-26 / SyScan 28 / 32

Designing a secure hard drive

A good design ?

Proposal
a secure µC (Atmel, ST, etc.) with hardware RNG and HW countermeasures

secure firmware update mechanism to be able to fix bugs

a validated/certified USB-SATA controller

good crypto

all in epoxy, to slow down the attacker

Crypto
disk encryption key (DEK) is based on secure µC RNG with output hashing

PIN is hashed with salt

DEK is encrypted with each PIN
PIN validation is done either by:

ideally, the USB-SATA chip by reading and checking a magic sector, decrypted with
DEK
verifying a magic in the decrypted DEK (easier to implement, easier to attack)

2015-03-26 / SyScan 29 / 32

Designing a secure hard drive

A good design ? (2)

Remaining challenges
µC CPUs are slow: how can we hash the PIN ?
Slow hashes like scrypt are out of question, but fast hashes help the attacker
brute-force the PIN

Going further (but at which cost ?)
use own ASIC/FPGA to make reversing more difficult

use tamper detection to erase secrets in case of intrusion

2015-03-26 / SyScan 30 / 32

Designing a secure hard drive

End

Questions?

2015-03-26 / SyScan 31 / 32

Designing a secure hard drive

References

[1] http://www.proxclone.com/pdfs/iClass_Key_Extraction.pdf

[2] http://blog.lanka.sk/2013/11/hacking-apc-back-ups-hs-500.html

[3] http://www.openpcd.org/images/HID-iCLASS-security.pdf

[4] http://www.cl.cam.ac.uk/~sps32/index.html

[5] http://www.bunniestudios.com/blog/?page_id=40

[6] http://spritesmods.com/?art=diskgenie

[7] http://www.t4f.org/articles/

fault-injection-attacks-clock-glitching-tutorial/

[8] http://www.break-ic.com/

[9] http://www.epplos-mcu.com/

2015-03-26 / SyScan 32 / 32

http://www.proxclone.com/pdfs/iClass_Key_Extraction.pdf
http://blog.lanka.sk/2013/11/hacking-apc-back-ups-hs-500.html
http://www.openpcd.org/images/HID-iCLASS-security.pdf
http://www.cl.cam.ac.uk/~sps32/index.html
http://www.bunniestudios.com/blog/?page_id=40
http://spritesmods.com/?art=diskgenie
http://www.t4f.org/articles/fault-injection-attacks-clock-glitching-tutorial/
http://www.t4f.org/articles/fault-injection-attacks-clock-glitching-tutorial/
http://www.break-ic.com/
http://www.epplos-mcu.com/

	Specifications
	Design
	Attacks and evaluation methods
	Conclusion

