
Lost your “secure” HDD PIN? We can help!
Julien Lenoir and Raphaël Rigo

2016-10-21

Abstract
USB HDD enclosures with encryption and pin pads are convenient

and (supposedly) secure. In this paper we present our analysis of several
models, both at the design level and the implementation level. We show
that most of them have serious design flaws, some are totally broken and
one even has a backdoor. After taking a step back and reflecting on the
ecosystem, we propose a better design.

Contents
1 Introduction 2

1.1 Context . 2
1.1.1 Drive types . 2
1.1.2 Attacker model . 2

1.2 Architectures . 3
1.2.1 Usability . 3
1.2.2 Hardware design . 3
1.2.3 Auditors’ goal . 4

2 Practical examples 4
2.1 Zalman ZM-SHE500 . 4

2.1.1 Hardware . 4
2.1.2 First steps: basic crypto checks 5
2.1.3 The update, the updater and the backdoor 6
2.1.4 Secrets: PIN . 7
2.1.5 Secrets: master key . 10
2.1.6 Secrets: AES-XTS keys 11
2.1.7 Attack 1: Instantaneous PIN recovery 12
2.1.8 Attack 2: Offline hard drive decryption 12

2.2 Zalman ZM-VE500 . 13
2.2.1 Hardware . 13
2.2.2 First steps: basic crypto checks 14
2.2.3 Firmware analysis . 15
2.2.4 “Security” scheme . 16
2.2.5 LCD debugging . 17
2.2.6 AES patching . 18
2.2.7 Bruteforcing . 18
2.2.8 Conclusion . 19

2.3 Zalman ZM-VE400 . 19

1

3 Going further 19
3.1 Suppliers . 19

3.1.1 AES core . 19
3.1.2 PCB . 20

3.2 A “secure” design . 20

4 Conclusion 21

1 Introduction
The goal of this paper is to give an overview of how “secure” external hard drive
enclosures are designed today and how their security can be assessed, mostly
with a software approach, as a complement to [CR15]ăwhich covered hardware
aspects.

1.1 Context
1.1.1 Drive types

External hard drives are now all connected through USB. Products are sold
both with and without included hard drives and most of them offer some kind
of security features to optionally protect data stored on the drive: password
protection, encryption, etc.

Usually, those protections rely on software components running on the com-
puter to “unlock” the drive. This paper will not consider such drives, which have
been studied extensively by [Dom16] or [AKm15] but will focus on self-contained
products, unlocked using a physical keyboard.

Models are basically split in three categories:
• cheap (< 100 USD): Zalman products, LOCKDOWN, Corsair Padlock,

Netac, etc.
• mid-range (> 100 USD): Apricorn, Lenovo, DataLocker/IronKey.
• certified for classified material storage: Globull, LOK-IT.
This study will deal mostly with cheap drives but the discussion will also

cover some mid-range designs.

1.1.2 Attacker model

Designs using a physical keyboard face interesting challenges to provide good
security:

• their computing power is limited,
• the keyboard interface does not (practically) allow for long and complex

passwords.
Regarding the threats faced by the hard drives, the obvious goal for the

attacker is to access the user data in the clear, without knowledge of the PIN.
In practice, we will consider the following attacker models, of increasing

difficulty:
• access to disconnected drive with enclosure, destructive actions allowed.
• access to disconnected drive with enclosure, case opening.
• access to disconnected drive with enclosure, no case opening.

2

• access to drive without enclosure.
Of course, in this study, we consider all the attack models at once but this

classification is useful to rate the impact of the final attack.
“Evil maid” or “BadUSB” attacks are also possible, but will not be consid-

ered.

1.2 Architectures
1.2.1 Usability

All drives are unlocked using a PIN, some of them support several PINs. Of
course, the user must be able to change his PIN without rencrypting the entire
drive. The drive should also tell the user when a wrong PIN is entered. This
implies that:

• the data encryption key is set once and for all (except reset)
• some means of verifying the PIN is present

i.e. two different types of secrets.

1.2.2 Hardware design

Most drives use the same architecture, based on the following components:
• a commercially available USB to SATA bridge, with integrated AES en-

cryption
• a microcontroller to handle PIN input and (optionally) LCD
• a SPI flash memory to store the controller’s firmware
Two main variants exist:
• with the microcontroller integrated in the USB-SATA bridge (figure 1)
• with an external microcontroller, with internal flash memory too and op-

tional external SPI flash (figure 2)

Keyboard
USB↔SATA

bridge
with uC

SPI flash
(firmware)

PIN USB

SATA disk

PIN

Figure 1: Architecture: integrated controller variant

“Secure” variants for mid-range models may use secure external microcon-
trollers, for example:

• IronKey, even though they do not have keyboard-based models, uses a
custom ASIC, plus physical security measures such as epoxy.

• Apricorn, in their Fortress model, uses epoxy and a FIPS validated mi-
crocontroller.

3

USB↔SATA
bridgemicrocontrollerkeyboard SPI flash

(firmware)

PIN USB

SATA disk

PIN KEY

Figure 2: Architecture: external controller variant

1.2.3 Auditors’ goal

Audited drives use a USB-SATA bridge chip implementing standard encryp-
tion algorithms, namely AES. Moreover those chips are often FIPS validated,
which means the crypto implementation should be correct1 and thus that flaws
probably reside in invalid key management or insecure storage.

Auditors have to answer the following questions regarding crypto keys:
• How are they generated ?
• Is their entropy high enough ?
• Where are they stored ?
• Do their storage depend on user’s secret (PIN) ?
This means some basic testing should be done before any advanced analysis:

testing different PINs, checking for actual encryption, testing an encrypted drive
in several enclosures, etc. This has been covered in [CR15].

2 Practical examples
2.1 Zalman ZM-SHE500
2.1.1 Hardware

First, we open the enclosure to look at the PCB to identify the various compo-
nents, as shown on figure 3.

We find that the drive uses the simple architecture with essentially 2 chips:
• a MediaLogic MLDU03 USB-SATA bridge (product brief)
• a Winbond W25Q16CL SPI flash (datasheet)
Unfortunately, the data sheet for the MediaLogic chip is not available. And

no information is given about the CPU core it uses. However, we have found
that it uses a VE850 as MediaLogic offers consulting services on this unusual
architecture.

We also discover that the PCB is marked with another company name (hid-
den by the LCD) and model: SKYDIGITAL LockDown. A quick search reveals
the original product.

1But not necessarily resistant to side channel attacks.

4

http://www.medialogic.co.jp/mldu03_product_brief_rev1.0.pdf
https://www.winbond.com/resource-files/da00-w25q16cld1.pdf
http://en.skyok.co.kr/product.php?code=610

Figure 3: SHE500 PCB front and back

2.1.2 First steps: basic crypto checks

Once a hard drive is inserted in the SHE500 enclosure, it as to be “associated”
with it. End user is prompted for a PIN during association. A SHE500 can be
associated with up to 50 different hard drives. Once the drive is “associated”,
it is ready for use and a master key is displayed to the user (see figure 4).

Figure 4: Master key displayed after HDD association

According to user manual, this master key is for data rescue purposes. If
the PIN is lost, Zalman is then able to recover the user’s data provided that the
HDD is working. This hints that the secrets are not stored on the drive itself
but in the enclosure, which is confirmed by tests.

Also, basic crypto checks show that data seems to be actually encrypted
and that the encryption key is not directly derived from the PIN. However, the

5

master key is suspiciously short, with only 64 bits, where AES-256-XTS needs
512 bits of key. . . We will come back later on this subject.

2.1.3 The update, the updater and the backdoor

Firmware and upgrade utility are available for download on Zalman’s website.
Which means we probably will not have to do complex hardware analysis.

The security analysis was performed using:
• an enclosure
• a firmware update
• the firmware updater
The SHE500 updater is a Windows program which communicates with the

enclosure using SCSI commands encapsulated in USB packets. FirmwareWriter.exe
is a wrapper on fwdu03_sdk.exe, the binary responsible for low-level communi-
cation with the device:

Usage: fwdu03 [option...] image-filename
<option> /INFO Chip Info.

/D=n Device Index(n=0..9)
/LIST Device List
/SNTXT Use "SN.TXT" file for Serial Number assignments.
/SNCMDLINE xxxxxx Use Command Line "xxxxxx" for Serial Number assignments.

Serial Number Length = 1 to 16.
/UPDATE F/W Update(Write Only F/W in Image File).
/BINIMG xxxxxx yyyyyy image-filename

Write Binary Image File to SROM.
"xxxxxx"h is start address.
"yyyyyy"h is writing size.
0h/non-designation : writing size = file size

But fwdu03_sdk.exe also has hidden commands that allow the user to per-
form a full dump of device memory, even if the PIN protection is enabled and
the drive locked:

• /MEMDUMPALL command: dumps microcontroller’s RAM
• /ROMDUMPALL command: dumps microcontroller’s flash
Output of /MEMDUMPALL command:

*** MEM ALL DUMP (adr = 03FF0000h len = 00004000h) ***
03FF0000 32 33 30 48 AE 23 80 0B 02 20 06 04 05 01 C7 50 230H.#...P
03FF0010 B1 00 01 00 01 01 0C 15 00 00 00 00 00 00 00 00
03FF0020 30 00 00 00 00 80 00 00 00 00 00 00 00 00 00 00 0...............
03FF0030 32 33 30 50 D4 01 00 00 00 01 32 F9 40 00 FF 03 230P......2.@...
03FF0040 08 0F 1F 00 00 10 00 00 00 00 00 00 00 00 00 00
03FF0050 5B 09 05 03 01 00 12 32 08 06 50 08 06 62 0F 05 [......2..P..b..
03FF0060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
03FF0070 0E 03 5A 00 41 00 4C 00 4D 00 41 00 4E 00 00 00 ..Z.A.L.M.A.N...

Output of /ROMDUMPALL command:

*** FLASHROM ALL DUMP (adr = 00000000h len = 00200000h) ***
00000000 32 33 30 48 AE 23 80 0B 02 20 06 04 05 01 C7 50 230H.#...P

6

00000010 B1 00 01 00 01 01 0C 15 00 00 00 00 00 00 00 00
00000020 30 00 00 00 00 80 00 00 00 00 00 00 00 00 00 00 0...............
00000030 32 33 30 50 D4 01 00 00 00 01 DF B4 40 00 FF 03 230P........@...
00000040 18 0F 1F 00 00 10 00 00 00 00 00 00 00 00 00 00
00000050 5B 09 00 40 00 01 12 32 08 06 50 08 06 62 0F 05 [..@...2..P..b..
00000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000070 22 03 4D 00 65 00 64 00 69 00 61 00 6C 00 6F 00 ".M.e.d.i.a.l.o.
00000080 67 00 69 00 63 00 20 00 43 00 6F 00 72 00 70 00 g.i.c. .C.o.r.p.
00000090 2E 00 00 00 FE FE FE FE FE FE FE FE FE FE FE FE
000000A0 FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE FE
000000B0 0E 03 4D 00 4C 00 44 00 55 00 30 00 33 00 00 00 ..M.L.D.U.0.3...

These functionalities are in fact implemented using a debugging feature/back-
door in the MediaLogic chip that allows reading and writing arbitrary parts of
RAM or flash, using SCSI with vendor-specific control code over USB:

def DumpMemory (dev , dump_addr , dump_size):
sg_raw -r 1k /dev/sg3 fd 09 03 ff 15 a4 00 02 00 00
AA AA AA AA LL LL
AAAAAAAAA = address
LL LL = len

dump_size = dump_size & 0xFFFF
cmd = struct .pack(">BBI", 0xFD , 0x09 , dump_addr) +

struct .pack("<I", dump_size)
output = py_sg.read(dev , cmd , dump_size)
return output

By coding our own memory dumper, we were able to perform a full dump
of the device memory, bigger than the one produced by fwdu03_sdk.exe. In
particular, several parts of memory contained code that is not present in the
firmware update file, which was very helpful to reverse engineer as we were able
to map the code at correct locations and build cross references to actual data
and initialized variables.

As a side note, we also discovered the following string in the dump:

04003E50 52 65 6E 65 73 61 73 20 75 50 44 37 32 30 32 33 Renesas uPD72023
04003E60 30 20 20 20 20 20 20 20 30 32 30 30 00 00 00 00 0 0200....

The MLDU03 is actually a rebranded Renesas µPD720230 bridge ! But the
data sheet is also not available, so it does not change anything.

2.1.4 Secrets: PIN

We now have all the elements needed to assess the security of the secrets. In
particular, by diffing the memory before/after associating a drive, as described
previously, we discovered how the enclosure stores secrets.

It writes structures to its flash, one for every HDD the enclosure is associated
with. These structures are located at offset 0x30000. They are composed of a
10 bytes magic SKYDIGITAL, 0x3F6 bytes pseudo-random buffer and a 0x90
bytes long encoded buffer.

00030000 53 4B 59 44 49 47 49 54 41 4C E6 EE F6 FE 07 11 SKYDIGITAL......
00030010 19 21 29 31 39 41 49 53 5B 63 6B 73 7B 83 8B 95 .!)19AIS[cks{...

7

00030020 9D A5 AD B5 BD C5 CD D7 DF E7 EF F7 00 08 10 1A
00030030 22 2A 32 3A 42 4A 52 5C 64 6C 74 7C 84 8C 94 9E "*2:BJR\dlt|....
00030040 A6 AE B6 BE C6 CE D6 E0 E8 F0 F8 01 09 11 19 23#
00030050 2B 33 3B 43 4B 53 5B 65 6D 75 7D 85 8D 95 9D A7 +3;CKS[emu}.....
...
000303A0 7A 82 8A 92 9A A4 AC B4 BC C4 CC D4 DC E6 EE F6 z...............
000303B0 FE 07 0F 17 1F 29 31 39 41 49 51 59 61 6B 73 7B)19AIQYaks{
000303C0 83 8B 93 9B A3 AD B5 BD C5 CD D5 DD E5 EF F7 00
000303D0 08 10 18 20 28 32 3A 42 4A 52 5A 62 6A 74 7C 84 ... (2:BJRZbjt|.
000303E0 8C 94 9C A4 AC B6 BE C6 CE D6 DE E6 EE F8 01 09
000303F0 11 19 21 29 31 3B 43 4B 53 5B 63 6B 73 7D 85 8D ..!)1;CKS[cks}..
00030400 FD 53 A1 9E EE 1D 73 D2 3B D1 74 7B AA 7C DD 8F .S....s.;.t{.|..
00030410 8E 42 B1 EB F7 18 0E D1 56 AD 05 6C D3 04 CC 99 .B......V..l....
00030420 9E 2A D8 EB 84 79 63 A2 23 C3 62 6C BB 69 DD 8F .*...yc.#.bl.i..
00030430 8E 42 B1 EB 84 79 63 A2 23 C3 62 6C 9B 49 FD AF .B...yc.#.bl.I..
00030440 AE 62 91 CB A4 59 43 82 03 E3 42 4C 9B 49 FD AF .b...YC...BL.I..
00030450 AE 62 91 CB A4 59 43 82 03 E3 42 4C 9B 49 FD AF .b...YC...BL.I..
00030460 AE 62 91 CB A4 59 43 82 03 E3 42 4C 9B 49 FD AF .b...YC...BL.I..
00030470 AE 62 91 CB A4 59 43 82 03 E3 42 4C 64 B6 02 50 .b...YC...BLd..P
00030480 51 9D 6E 34 A4 50 43 E1 68 90 39 CF 10 DC 60 0A Q.n4.PC.h.9...‘.

As you can see, the patterns are evident and indicate that the “crypto” is
probably weak.

By searching for SKYDIGITAL magic in the firmware we were able to locate
the function responsible for decoding the structure (see figure 5).

The algorithm to decode the structure is quite simple but non-standard. It
uses a hard-coded vector and a random buffer to generate a key, which is later
used to decode (using xor) the relevant part of the structure at offset 0x400.

This algorithm is equivalent to the following C pseudo-code:

uint8_t vector = {
0xAF , 0x68 , 0x11 , 0x18 , 0x70 , 0x48 , 0xC1 , 0x6C ,
0xF7 , 0x1B , 0xA2 , 0xE1 , 0x50 , 0x46 , 0x5C , 0xCE };

uint8_t key [16] = {0};
uint8_t * random_buf = flash_read (0 x30200 , 0x200);
for (i=0; i <16; i++) {

key[i] = random_buf [vector [i]];
}
uint8_t * secret_struct = flash_read (0 x30400 , 0x200);
xor_buffers (secret_struct , key , 0x200);

After decoding, the structure appears in clear form:

00000000 53 31 30 55 4A 44 30 50 38 32 36 37 31 35 20 20 S10UJD0P826715
00000010 20 20 20 20 53 41 4D 53 55 4E 47 20 48 4D 31 36 SAMSUNG HM16
00000020 30 48 49 20 20 20 20 20 20 20 20 20 20 20 20 20 0HI
00000030 20 20 20 20 20 20 20 20 20 20 20 20 E7 CF 6A 00
00000040 59 7D 7F 9B 53 31 30 55 4A 44 30 50 38 32 36 37 Y}..S10UJD0P8267
00000050 31 35 20 20 20 20 20 20 53 41 4D 53 55 4E 47 20 15 SAMSUNG

8

Figure 5: Decoding structure in firmware

00000060 48 4D 31 36 30 48 49 20 20 20 20 20 20 20 20 20 HM160HI
00000070 20 20 20 20 20 20 20 20 20 20 20 20 E7 CF 6A 00
00000080 C9 ED E4 9B 00 03 00

Obviously, the structure contains the model name and the serial number of
the associated hard drive. Less obvious, but nevertheless very important, it also
contains the user’s PIN and AES-XTS keys, which we will cover later.

The code responsible for checking the PIN is not in the firmware file, we
found it in the RAM at high addresses (over 0x04000000).

The current masked PIN is stored at offset 0x80 of the struct (9BE4EDC9 in
our example). Note that it may be different from the PIN used to setup the
drive, as the user is able to change PIN at anytime. The PIN is not stored
directly but encoded using this algorithm, taking the PIN as a 32-bit integer as
input:

def reveal_pin (input_pin , serial_number , hw_model):
var_1AEAD = [0x87 ,0xF4 ,0x5E ,0 xCD]
for i in range (4):

c = input_pin [i]
c = c ^ var_1AEAD [i]
input_pin [i] = c

for j in range (5):
x = serial_number [4*j+i]

9

x = ord(x)
input_pin [i] = x ^ input_pin [i]

for j in range (10):
x = hw_model [4*j+i]
x = ord(x)
input_pin [i] = x ^ input_pin [i]

return input_pin

The PIN is stored xored with a constant dword (0xCD5EF487), drive model
name and drive serial number, in our case S10UJD0P826715 and SAMSUNG HM160HI.
The reveal_pin converts the input 0x9BE4EDC9 into a decimal number 33440000.
When user inputs PIN, digits are stored in memory and the converted to a 32
bits number, PIN digit 0 is encoded as 1, PIN digit 1 is encoded as 2 and so
on. This means decimal number 33440000 is the representation of a four digit
PIN: 2233. This also means PIN collisions are possible. The following script
does the final computation and outputs all possible PIN collisions:

def compute_pins (dword , s1 , s2):

s = struct .pack("<I",dword)
input = [ord(s[0]) , ord(s[1]) , ord(s[2]) , ord(s

[3])]
output = reveal_pin (input , s1 , s2)

s = output [3] << 24
s += output [2] << 16
s += output [1] << 8
s += output [0]

s = "%08d" % s

pins = []
n = int(s)
for l in range (4 ,9):

m = 10**(8 -l)
if n % m == 0:

a = int("1"*l)*m
if 0 <= n-a < 100000000:

pin = (n-a)/m
pins. append (("%%0% ii" % l) % pin)

return pins

In our exemple, 0x9BE4EDC9 has five PIN collisions 2233, 22329, 223289,
2232889 and 22328889.

2.1.5 Secrets: master key

We also located code responsible for computing the master key.

hardcoded_value = [0x9E , 0x87 , 0xAB , 0xC4 ,

10

0x6E , 0x01 , 0x5E , 0x94]
def print_master_key (vector):

c0 = vector [0] ^ vector [4] ^ hardcoded_value [0]
c1 = vector [1] ^ vector [5] ^ hardcoded_value [1]
c2 = vector [2] ^ vector [6] ^ hardcoded_value [2]
c3 = vector [3] ^ vector [7] ^ hardcoded_value [3]
c4 = vector [4] ^ hardcoded_value [4]
c5 = vector [5] ^ hardcoded_value [5]
c6 = vector [6] ^ hardcoded_value [6]
c7 = vector [7] ^ hardcoded_value [7]

print "%02X"*8 % (c0 , c1 , c2 , c3 , c4 , c5 , c6 , c7)

The master key is the result of encoding two dwords: 0x6ACFE7 and 0x9B7F7D59.
We are not sure how the first is generated but we think it is time dependent as
we noticed it does not change much from one drive to another.

The second dword (0x9B7F7D59) is the masked PIN entered by the user
when associating the drive (in our case 1234).

Careful readers are probably wondering how this master key can help recover
HDD data since its size is very small: only 64 bits. This leads us to the final,
and probably most important, data stored in the structure: AES-XTS keys used
to encrypt the whole drive.

2.1.6 Secrets: AES-XTS keys

The AES keys are indeed stored in the structure. However we did not realize
they were there until we found the piece of code copying the keys in the MMIO
of the crypto chip (see figure 6).

Figure 6: Copy of AES keys to chip MMIO

The device uses AES in XTS mode, thus working with two 256-bit keys.
Figure 7 shows the two 256-bit keys:

As surprising as it can be, those two keys are composed of:
• dword 0x6ACFE7, time-dependent
• dword 0x9B7F7D59, first user PIN, masked
• HDD model name

11

Figure 7: Two 256-bit AES XTS keys

• HDD serial number
This explains why the master key is sufficient to recover the HDD data.

Indeed, with physical access to an encrypted HDD, one can retrieve the model
name and the serial number. The only missing parts are the two dwords to
rebuild the first 64 bits of the first AES key. We now have enough information
to implement two different practical attacks.

2.1.7 Attack 1: Instantaneous PIN recovery

The first attack scenario is the instantaneous PIN recovery. Physical access
to the enclosure is required. Using the MediaLogic backdoor one can read the
secret structure in the device’s RAM. In our firmware build the masked PIN is
stored in RAM at address 0x3FF1624. It is then straightforward to recover the
PIN using the algorithm presented in previous section.

As a result, an attacker is able to: recover the user’s PIN, unlock the
drive and access user’s data instantly.

2.1.8 Attack 2: Offline hard drive decryption

With physical access to an encrypted hard drive, even without the enclosure, it
is possible to conduct a brute force attack on the PIN to recover the encryption
keys.

Indeed, as the model name and serial number are available, the only missing
parts to recover the encryption keys are the 64 bits of the first XTS key, in
our example the two dwords 0x6ACFE7 and 0x9B7F7D59. As the first dword
0x6ACFE7 does not vary much from one drive to another, we empirically reduced
entropy to 16 bits. The other dword is the the first user PIN, encoded.

The SHE500 allows PINs between 4 and 8 digits. So the total entropy is
about 42 bits. We used the first sector as input data and as stop criteria:

• 0x55AA marker
• a high number of zeros in the decrypted block, which is the case for usual

boot sectors.
In practice we can test all PINs for a given first DWORD in about 2s on a

desktop Core i7, which translates to 36 hours maximum. But this could probably
be done much faster by reducing the possible values for the first dword.

The bruteforce is also helped by the fact that Key2 is constant: one can
precompute the xor masks to apply and only use AES on the first key.

12

2.2 Zalman ZM-VE500
2.2.1 Hardware

First, as on the SHE500, we open the enclosure to look at the PCB to identify
the various components, as shown on figure 8.

Figure 8: VE500 PCB front and back

Again, we find that the drive uses the simple architecture with essentially 3
chips:

• a Initio INIC-3607E USB-SATA bridge (no public info)
• an unmarked capacitive keyboard controller
• a Pm25LQ032 SPI flash (data sheet)
The data sheet is not available for the INIC controller, but public info shows

that it uses an ARCompact CPU. Also, this time the PCB is branded with the
real model name, so it is not just a case rebranding.

13

https://www.icbanq.com/image/sample/pm25LQ032-BCE.PDF

2.2.2 First steps: basic crypto checks

We first start with the usual basic testing:
• checking for actual encryption,
• checking for change in disk size or behavior,
• configuring the same PIN several times and verifying the encryption is

different.
The results are interesting: encryption seems OK but while the drive does

not show any change in its advertised size, reading the last sectors does not
return any data.

Reading them directly with a normal USB-SATA bridge gives us the follow-
ing (with high entropy sectors edited for brevity):

01e01000 2e bd 1d 45 87 90 53 84 dd f7 a2 81 5f 2e 38 48 |...E..S....._.8H|
01e01010 9f 19 5a 5c 20 2b 53 d8 eb 9e 8e f5 1f ca c5 4a |..Z\ +S........J|
[...]
01e011e0 43 b5 90 49 6f 91 67 f2 b1 c3 43 bd ed 2d 66 8f |C..Io.g...C..-f.|
01e011f0 ab b2 ff 2a 5f 34 5b bb af 5e 4a 4a a4 66 e8 21 |...*_4[..^JJ.f.!|
01e01200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
01e02000 20 49 4e 49 3a 00 00 00 f3 ac 93 a1 28 00 00 00 | INI:.......(...|
01e02010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
01e02020 00 00 00 00 00 00 00 00 00 06 50 09 00 00 00 00 |..........P.....|
01e02030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
01e02040 00 00 00 00 00 f0 00 00 00 00 00 00 00 00 00 00 |................|
01e02050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
01e21000 b9 04 ed 10 5d ed d6 02 6f 78 7b ed 91 84 e6 ed |....]...ox{.....|
01e21010 72 f2 8b 7b 11 a0 08 ce 1d 1c e6 aa 15 fd 76 46 |r..{..........vF|
[...]
01e211f0 81 53 2a aa 79 72 c9 cd 11 b4 cb b0 62 53 88 b3 |.S*.yr......bS..|
01e21200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
01e22000 20 49 4e 49 3a 00 00 00 f3 ac 93 a1 28 00 00 00 | INI:.......(...|
01e22010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
01e22020 00 00 00 00 00 00 00 00 00 06 50 09 00 00 00 00 |..........P.....|
01e22030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
01e22040 00 00 00 00 00 f0 00 00 00 00 00 00 00 00 00 00 |................|
01e22050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

We have two similar blocks composed of two parts:
• one high entropy sector of 512 bytes,
• one very low entropy part with a “ INI” magic at the beginning.
We make the hypothesis that everything needed for encryption is stored in

the encrypted blobs, which is easily verified by testing the drive in another
enclosure and entering the correct PIN: everything works.

Our goal from now on will be to identify how the blobs are generated and
encrypted so we can mount an offline attack to bruteforce the PIN code.

14

2.2.3 Firmware analysis

Fortunately for us, the firmware upgrade utility is available on the web site and
seems to contain an unencrypted firmware.

The microcontroller is an ARCompact which is thankfully supported by IDA.
As the firmware file starts with 0x4000 bytes of 0xFF, we load the file from this
offset in IDA, hoping that the base loading address will not be too difficult to
identify. The result can been seen in figure 9.

Figure 9: ARCompact firmware loaded in IDA

Luckily, the base address seems to be 0 as most cross references are identified.
Also, the start address at 0x400 looks promising (figure 10). The gp based
addressing is not handled by IDA so a small Python script was developed to
resolve all globals.

Figure 10: VE500 startup code

Now that we have (almost) everything we need, we can start reversing the
firmware, looking for:

• crypto chip init (but we do not have data sheets)
• disk I/O (no data sheet. . .)

15

• PIN input
• menu entries
Of course since the crypto is handled in hardware, looking for known con-

stants gives no results. So the easiest way in is through strings displayed on the
LCD. In particular, the function handling the menu display may help discov-
ering the role of some globals and functions, but its CFG is not pretty (figure
11).

Figure 11: CFG of VE500 menu handling function

After a lot of reversing work, particularly around the “Wrong PWD” strings,
several things were identified:

• crypto processor MMIO addresses,
• two weird AES keys (π), figure 12
• a comparison of a (seemingly) decrypted block with a “ INI” magic

Figure 12: Hardcoded AES keys

2.2.4 “Security” scheme

So, in the end, the PIN verification scheme can be summarized as:
1. get PIN in 8 byte array, 0 padded

16

2. memcpy(aeskey, pin, 8): copy 8 bytes of PIN, zero-padded, at the be-
ginning of the π key

3. configure HDD crypto engine with AES-256-XTS with:
• AES π key partially overwritten with PIN as key 1
• “0” (yes, 256 bits of zeros) key as key 2
• sector number as tweak

4. read “secret” block through crypto engine
5. check for magic “ INI”
So, in theory, writing a bruteforcer is trivial: just read the secret block and

try all PINs until the correct one is found. But of course, in practice, our
bruteforcer did not stop.

This meant that we had to dig deeper to identify what was wrong: our
hypothesis or a particular implementation detail ?

In particular, we located the disk access function, using the constants from
the ATA command set. It helped us understand how the firmware accesses
encrypted sectors at the end of hard drive, using ATA “READ DMA EXT” and
“WRITE DMA EXT” commands (figure 13).

Figure 13: Firmware builds DMA read/write ATA command

We also reversed most of the global states variable of the menu to ensure
we were not missing any interesting code path and soon reached the conclusion
that a static only approach was not enough.

2.2.5 LCD debugging

So, how can we debug and try to find what’s wrong ? The easiest way we found
was to:

• patch the firmware to display memory on the LCD
• patch the firmware to change AES options and keys
As we were not 100% sure of some things, we wanted to have a means of

displaying memory, but since the chip is very small and we had no data sheet, the
only easy thing was to use the DisplayStr function to display arbitrary memory

17

Figure 14: Example of memory dumping using the LCD

(figure 14). As the firmware is not signed and only checked by a CRC16, we
could reflash arbitrary code, trying not to brick anything. . .

Using it, we verified that we were using the right keys and the right tweak
for the AES function.

2.2.6 AES patching

The other things we did were to modify the AES parameters in the firmware.
Thus trying to understand exactly how they are used by the crypto chip, using
a combination of:

• fixing the XTS tweak to 0 to avoid any endianness issue,
• switching to AES-ECB mode to use only one key,
• set the AES keys to known values and compare output to AES test vectors:

– all zeros
– only one byte to 0x01, in various positions
– 01 02 03 04 00 ..., to test for endianness

After a lot of disk swapping between the VE500 and a normal bridge, we
discovered that although the key is passed “normally” to the crypto engine, the
actual key used for encryption is:

• byteswapped: 01 02 03 04 05 06 07 08 becomes 08 07 06 05...
• key 1 and key 2 are swapped

The tweak is the actual sector number, in little endian.

2.2.7 Bruteforcing

Implementing the bruteforcer is rather trivial, but interestingly, since the padding
of the PIN used in the key is made with zeros and as the digit “0” is encoded
as 0x00, all PINs less than 4 chars can be padded with 0 and still be considered
as valid.

Performance: an OpenSSL based bruteforcer, parallelized with OpenMP and
running on a desktop Intel i7 bruteforces all PIN candidates in about 6s.

As Key2 is only zeros, we can apply the same optimization we used on the
SHE500 and only bruteforce Key1.

Firmware 2.0 When firmware 2.0 was released, we tried our bruteforcer but
it did not work anymore. After a bit of reversing, we found that the PIN is now
padded with 0xFD instead of 0x00 to avoid PIN collisions.

18

2.2.8 Conclusion

Once again the design itself is broken from the start:
• storing the secrets on the disk allows for immediate access (with open

case) to the attacker
• the absence of real key derivation from the PIN allows for trivial brute-

forcing
• 0-padding in version 1 of the firmware implies PIN collisions
So against our attacker model, the drive is broken against an attacker who

can access the enclosure and open it.
We did not fully understand how the actual data encryption key are gen-

erated but the “secret” block, once decrypted, contains high entropy material
which could be used as AES keys.

2.3 Zalman ZM-VE400
The VE400 was initially studied in [CR15] using electronic methods as the
firmware is encrypted. Further studies of the Fujitsu MB86C311 were done on
another drive in [O’F16].

While it was not broken initially, it is interesting to compare its design to
the other drives covered: as with the VE500, the secrets are stored on the drive,
and a bruteforce attack would most probably be feasible as it also limits the
PIN to 8 digits.

However, two independant factors have rendered the complete attack way
more complex compared to the VE500:

• the bridge’s firmware encryption,
• the PIC32MX protection bits.
As recovering the code is difficult, we could not reverse engineer the details

of the PIN verification to implement either a software bruteforcer or a fake
keyboard.

3 Going further
3.1 Suppliers
3.1.1 AES core

During our investigation, we have found troubling similarities between different
designs, in particular in the work of [AKm15]. Several chip manufacturers,
apparently completely unrelated, have exactly similar things:

• same AES π key
• same AES mode constants
[AKm15] show that:
• JMicron chips (JMS538S), used by Western Digital mainly
• Initio chips (1607E, 3607E), used by WD, Lenovo, Apricorn, Zalman, etc.
• PLX chips (OXUF943SE), used by WD

include the same keys.

19

The AES constants can also be found in the “WD security” application for
Mac, in some C headers file2:
/*

Created by David Tay
Copyright 2006 Western Digital Corporation .

All rights reserved .
File name: common .h
Contents : Common definitions used in the various

modules for both the device , server and clients
*/

enum {
NO_CIPHER = 0x00 ,
AES_128_ECB = 0x10 ,
AES_128_CBC = 0x12 ,
AES_128_XTS = 0x18 ,

AES_256_ECB = 0x20 ,
AES_256_CBC = 0x22 ,
AES_256_XTS = 0x28 ,
FULL_DISK_ENCRYPTION = 0x30

};

Our hypothesis here is that a single AES-XTS “IP” (i.e. Verilog or VHDL
code) was used by all manufacturers and that it comes with example code that
used those AES π keys.

This would imply that a single core is used by the major providers on the
market, which would all be vulnerable if the core itself was flawed.

Certifications, FIPS Another interesting point is that many chips are “FIPS
certified”, but (most of the times) it only means that their core correctly imple-
ments AES and it gives no information about the actual security.

3.1.2 PCB

It is also interesting to note that the brand visible on the outside does not mean
the actual PCB was designed by the company.

Several rebrandings we know of :
• at least some iStorage products: manufactured by Apricorn
• Lenovo ThinkPad Secure Hard Drive: manufactured by Apricorn
• Zalman ZM-VE400: manufactured by iODD
• Zalman ZM-SHE500: manufactured by Sky Digital
• Zalman ZM-SHE350: manufactured by Sky Digital
So, actually knowing what you are buying is not easy.

3.2 A “secure” design
Some manufacturers want their users to be able to replace the enclosure and
still be able to access their data. In that case, two options are possible :

2Which also include a lot of SCSI commands and definitions.

20

• store the secrets on the enclosure and display a recovery key to the user
• store the secrets on the drive.

User-friendliness : secrets on disk With secrets on the drive, no truly
secure design can be done as, once the reverse engineering work is done, brute-
forcing the PIN will only necessitate access to the drive.

The only thing is to try to slow the hash as much as possibly by hashing the
PIN incrementally, using the fact that the user takes time between each digit
and of course by allowing long PIN lengths.

Storing secrets on the enclosure As without hardware help we are essen-
tially screwed (only long PIN could be secure), the basic idea is to make it
harder for the attacker to access the secrets by either:

• storing them on a component that cannot be read programmatically,
• storing (even on the drive) them encrypted with a random key stored in

a component.
For cheap models, this can be achieved by using an external microcontroller

with internal storage protected against external access such as PIC and AVR.
But such chips can be read for a few thousands of USD.

However, the best design is to use a secure component with an integrated
crypto engine with a fuse programmable key:

• provision the micro-controller with a random AES key (fuse blowing)
• encrypt the PIN’s hash with the micro-controller keyed AES-engine

Add some brute-force counter measures and firmware signature.
Thus an attacker wishing to bruteforce a long PIN has to recover the secret

AES key from the fuses using destructive and expensive hardware attacks.

4 Conclusion
This overview of several drive enclosures leads to a depressing conclusion:

• (almost) no enclosure can be trusted without an independent audit.
As the cost requirements of the cheaper drives probably prevent such audits,

it would be better for the manufacturers to:
• hire cryptographers !
• publish their crypto design
• allow for PIN longer than 8 digits (!)
Even though with cheap devices like those we cannot expect a very high

security level, it can be improved with very low investment. We were also very
surprised to see such bad coding practices and lack of crypto knowledge.

21

References
[AKm15] Gunnar Alendal, Christian Kison, and modg. got hw crypto? on the

(in)security of a self-encrypting drive series. https://eprint.iacr.
org/2015/1002.pdf, 2015.

[CR15] Joffrey Czarny and Raphaël Rigo. Analysis of an en-
crypted HDD. SSTIC conference : https://www.sstic.org/
media/SSTIC2015/SSTIC-actes/hardware_re_for_software_
reversers/SSTIC2015-Article-hardware_re_for_software_
reversers-czarny_rigo.pdf, 2015.

[Dom16] Sprite (Jeroen Domburg). Sprite’s mods security page. http:
//spritesmods.com/?art=security, 2006-2016.

[O’F16] Colin O’Flynn. Brute-forcing lockdown harddrive pin
codes. https://www.blackhat.com/us-16/briefings.html#
brute-forcing-lockdown-harddrive-pin-codes, 2016.

22

https://eprint.iacr.org/2015/1002.pdf
https://eprint.iacr.org/2015/1002.pdf
https://www.sstic.org/media/SSTIC2015/SSTIC-actes/hardware_re_for_software_reversers/SSTIC2015-Article-hardware_re_for_software_reversers-czarny_rigo.pdf
https://www.sstic.org/media/SSTIC2015/SSTIC-actes/hardware_re_for_software_reversers/SSTIC2015-Article-hardware_re_for_software_reversers-czarny_rigo.pdf
https://www.sstic.org/media/SSTIC2015/SSTIC-actes/hardware_re_for_software_reversers/SSTIC2015-Article-hardware_re_for_software_reversers-czarny_rigo.pdf
https://www.sstic.org/media/SSTIC2015/SSTIC-actes/hardware_re_for_software_reversers/SSTIC2015-Article-hardware_re_for_software_reversers-czarny_rigo.pdf
http://spritesmods.com/?art=security
http://spritesmods.com/?art=security
https://www.blackhat.com/us-16/briefings.html#brute-forcing-lockdown-harddrive-pin-codes
https://www.blackhat.com/us-16/briefings.html#brute-forcing-lockdown-harddrive-pin-codes

	Introduction
	Context
	Drive types
	Attacker model

	Architectures
	Usability
	Hardware design
	Auditors' goal

	Practical examples
	Zalman ZM-SHE500
	Hardware
	First steps: basic crypto checks
	The update, the updater and the backdoor
	Secrets: PIN
	Secrets: master key
	Secrets: AES-XTS keys
	Attack 1: Instantaneous PIN recovery
	Attack 2: Offline hard drive decryption

	Zalman ZM-VE500
	Hardware
	First steps: basic crypto checks
	Firmware analysis
	``Security'' scheme
	LCD debugging
	AES patching
	Bruteforcing
	Conclusion

	Zalman ZM-VE400

	Going further
	Suppliers
	AES core
	PCB

	A ``secure'' design

	Conclusion

